
JMLL,	“Fundamental	Constants”	(2015)											1	

 

The Reform of the International System of Units (SI)  
Philosophical, Historical and Sociological Issues  
Edited	by	Nadine	de	Courtenay,	Olivier	Darrigol,	and	Oliver	Schlaudt	
Routledge	2018	(pp.	125-149) 
 

On the Conceptual Nature of the Physical Constants* 
 

Jean-Marc Lévy-Leblond† 
 
 
Introduction. 
 

In most formulae of physics, or, more generally, in most theoretical analyses of 
any physical phenomenon, there appears one or more physical constants. Some of 
these play an essential and pervasive role in physics. They are variously called 
“general” , or ”fundamental” , or “universal”  physical constants. Yet, despite their 
importance, very little seems to have been written about their nature and significance 
until rather recently [1] [2].  

A quick glance at the contents of different tables of such constants, however, 
should be sufficient to raise up several questions, bearing upon some deep 
conceptual aspects of physics. Consider, for instance, the seminal article written in 
1929 by Birge [3], one of the first specialists in the systematic investigation of 
the physical constants. In this paper, which rightly starts by asserting that 
“some of the most important results of physical science are embodied, directly or 
indirectly, in the numerical magnitude of various universal constants”, the 
determination is studied of the following constants: velocity of light c, gravitation 
constant G, relation of litre to cubic centimetre, normal mole volume of ideal 
gas V0, relation of international to absolute electrical units, several atomic 

weights (H, He, N, Ag, I, C, Ca), normal atmosphere, absolute temperature of 
ice-point, mechanical equivalent of heat J, Faraday constant F, electronic 
charge e, specific charge of the electron e/m, Planck constant h plus various 
“additional quantities” (ratio of e.s. to e.m. units, density of water, Rydberg 
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constant, Avogadro number N , Boltzmann constant k, etc.). Thirty years later, 
Cohen, Crowe and DuMond [4] in their book, The Fundamental Constants of Physics, 
distinguish “classical constants” such as G, V0, R, J, F from “atomic constants”, 
while recognizing that “the meaning of the term ‘atomic constants’ has 
become increasingly inclusive and indefinite”. In 1969, Taylor, Parker and 
Langenberg [5] chose as “the fundamental physical constants”  the following 
set: c, e, h, N, a.m.u., me, Mp , Mn , k, G; see also the table compiled by Cohen in 1974 
[6]. More recently, Mohr and Taylor [7] restrain the list of “universal constants” to c, G, 

h and (curiously) ε0 and µ0, while as of 2015, the Wikipedia article sticks to c, G, h. The 
heterogeneity and variability of these lists offers a relevant starting point for 
our reflections. 
Here are some of the questions I will attempt to answer in this paper : 
— why are there ”fundamental constants” in physics and not, for instance, in 
biology or geology? 
— why are there no such constants in the most classical theories of physics, such 
as classical mechanics? 
— are not the classical constants of thermodynamics and statistical 
mechanics, R (or k) and J, less fundamental than the “atomic” modern 
constants, c and h? 
— is there anything common between a simple unit conversion factor, such 
as the ratio of litre to cubic centimetre, and a universal constant, such as 
Planck's? 
— why is the velocity of light c considered as a fundamental constant when, 
according to its very name, it seems to be associated with a particular class of 
physical phenomena only, namely the propagation of electromagnetic 
radiation? 
— what is the meaning of taking the value of some of these constants as 
unity, as though this value was not to be experimentally determined? 
— conversely, how can one let these constants “go to zero” (or to infinity), as if they 
were not constants, in order to define approximate limiting theories such as 

Newtonian mechanics (h→ 0 ) and Galilean relativity ( c→∞ ) ? 
— are all the so-called fundamental constants on the same footing, whether 
they be masses of elementary particles, coupling constants or unit conversion 
factors, such as Mp, G and the a.m.u. (atomic mass unit) respectively, to stay 
within the list of “atomic” constants? 
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— how comes that the contents of the tables of “fundamental” physics constants vary 
with time, as a simple comparison of various such tables reveals (see above)? 

I will try to show that the answers to these questions and other ones rely 
on the understanding of physical science as a historical process. Only by 
studying the conditions for the appearance, or disappearance, of physical 
constants can we understand their nature. Only by emphasizing the 
variations in status of a given constant, can we understand its role. Only by 
contrasting the opposite effects of theoretical and experimental practices 
upon the fate of such a constant, can we analyse its significance. The present 
investigation thus takes place within a definite vision of physics, and science 
in general, as a social endeavour. Its ensuing historicity should then be put 
into light even at its seemingly most abstract and formal levels. The case of 
physical constants thus epitomizes this view, since their constant numerical 
values make sense only through a changing conceptual nature. 
 
 
I. - A classification of physical constants. 
 

Let me start by proposing a classification of physical constants into three 
types. This, hopefully, may bring some order in the otherwise rather 
incongruous lists offered by the standard tables. By order of increasing 
generality, I will thus distinguish: 

A) Physical properties of particular objects: for instance, the masses of fundamental 
particles, their magnetic moments, energy widths of unstable  ones, etc. 

B) Constants characterizing whole classes of physical phenomena: these are mainly 
the coupling constants of the various fundamental interactions, such as 
Newton’s constant G a s s o c i a t e d  with gravitation. 

C) Universal constants, such as c or h, which enter the most general theoretical 
framework available, independently of particular objects or specific interactions 
(I will come back later on to the validity of approximate theories, where such 
constants may be neglected  —   see section 3). 

The interest of such a classification is not to offer an intrinsic, absolute and 
invariant characterization of any given constant. Quite on the contrary, it is its 
strong time dependence which makes it useful for discussing the changing 
status of most physical constants. Indeed, mobility is the rule, a constant 
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moving from one type to another when our physical knowledge increases. 
Consider first the constants of type-A. While for quite a few decades the masses of 
the nucleons (for instance) belonged to that class, we are now convinced that their 
values can (or could) be explained in terms of the masses of their constituents 
(quarks, gluons) and the strengths of their interactions. The nucleon masses thus in 
some sense may be dropped out altogether from the table of fundamental 
constants, their status now being that of derived quantities. This is the case 
even though one is not yet able to compute them exactly from the deeper theory: 
the principle of their dependence upon more fundamental quantities is sufficient 
to ensure their ”de-fundamentalisation”. This is precisely what has happened 
before to the old physical constants, which, at the beginning of this century, 
consisted of the macroscopic properties of the simple elements, such as 
density, compressibility or heat capacity. Now we know that their values rely on 
the atomic structure of matter and are explainable in principle from quantum 
theory, even though very few such calculations may be achieved in fact. The 
same happened for the atomic and molecular properties, such as ionization 
energies or polarizability, and then for nuclear properties, such as masses, sizes, 
etc. The new fundamental constants, in terms of which the old ones are 
explained away, may belong to any of the three classes. The atomic and 
molecular quantities thus are eliminated once they are known to depend on the 
electronic mass m (type-A), on the electromagnetic coupling constant e (type-
B) and on Planck quantum constant (type- C). In the same way, the advent of 
quantum electrodynamics has enabled us to express the electron magnetic 
moment in terms of the same quantities, so that it is no longer a fundamental 
constant. 

But a type-A constant, instead of vanishing from the table, may be promoted 
to another category. This is the case of e, for instance. First characterized as the 
electric charge of the electron, a specific property of a particular object, it was 
later on recognized as the coupling constant of electromagnetic fields to all 
charged fundamental constituents of matter, and associated with the whole class 
of all electrodynamic phenomena. It thus became a type-B constant. An even 
more important example is afforded by the change in status experienced by c. 
As the terminology unfortunately still reflects, c was first introduced as the 
speed of light, that is a type-A constant. With the development of 
electrodynamics (classical), it came to be understood as playing a role in all 
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electromagnetic phenomena: in most theoretical expressions, its significance is 
not directly that of a velocity (even though its dimensions are, of course), and 
one might thus think of c as a type-B constant. But the advent of Einsteinian 
relativity forces us to associate c with the theoretical description of space-time 
itself, independent of its specific contents. This is proved by the fact that 
Einsteinian relativity, according to our present knowledge, rules all fundamental 
interactions, implying the occurrence of c in the relevant theories even when 
no electromagnetic phenomena are to be considered at all. This point is 
blurred by the traditional terminology (‘speed of light’), associated with a 
operational interpretation of relativity theory, whereby the Lorentz 
transformations are derived from an analysis of communication through 
electromagnetic signals. The theory, however, may be built upon a structural 
analysis of space­time, without using any postulate about the velocity of light 
[8]. That c thus has to be considered as a type-C constant, and not a type-A 
only, may be further emphasized by stressing that it could well be the velocity 
of …no existing physical object. If the photon had a non-vanishing mass, however 
small, its velocity would be closely approximated by c in all presently known 
situations, but would differ from it for low enough energies [9]. While such an 
occurrence would not per se ruin the validity of Einsteinian relativity, it would, 
however, invalidate most of its customary derivations. As a last argument, one 
might think of how Planck constant would have been considered, had it been 
first introduced through the discovery of angular-momentum quantization for 
the photon; it would then probably go by the name of the “spin of light”. In 
fact, c is not the speed of light any more than h is the spin of light. Renaming 
it “Einstein constant” would certainly be appropriate 

The same phenomena of elimination or promotion may affect type-B 
constants. Indeed, if a theoretical unification of two classes of interactions is 
realized, one (or perhaps both) of the coupling constants will lose its ( their) 
fundamental nature, in favour of the other one (or of another, new, constant). 
Such a phenomenon was witnessed in the past with the unification by Maxwell of 
electricity and magnetism, whereby the magnetic permeability µ0 and the electric 

permittivity ε0 of the vacuum (type-B constants) were found to be related through 
the “speed of light” c (type-A constant). The same situation in some sense is 
realized by the unification in the Standard Model of the weak and 
electromagnetic constants. In the case in which all four (or more) fundamental 
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interactions would be unified, they would be described by a n e w  fundamental 
universal constant, of type-A.  

A similar case would be realized if some of the constants were shown not to be 
constants, exhibiting a cosmological time dependence as in the now abandoned 
Dirac hypothesis [10]. The new constant parameters in terms of which the time 
dependence of these no longer constants would be expressed, should then take 
their place in the tables. 

Not only does the type of a fundamental constant (or its absence thereof) 
depend on the history of physics, but it may also vary according to one's 
implicit epistemological position. This remark is already clear from our 
discussion of c. But a better case in point, since a more controversial one, is that of 
Newton’s gravitational constant G. According to the standard point of view 
upon general relativity, space-time itself is ruled by gravity along with all 
phenomena within it. General relativity, in its geometrical interpretation, is an 
all-embracing theory, and its characteristic constant G should thus be elevated 
to type-C dignity. However, there exists an heterodox point of view, according 
to which the so-called “general relativity” is but a particular theory of a spin-
2 classical field [11]. This field is universally coupled to energy, including its 
own, which endows it with a specific nonlinear behaviour. Because of this 
universal coupling, furthermore, the field plays the role of an effective 
variable space-time Riemannian metric ruling all physical phenomena. 
Needless to say, the formal theory is exactly identical to the conventional one, 
so that no experimental discrimination is possible. The advantage of such a 
view is to maintain gravitation at the level of the other fundamental 
interactions, its theoretical description being given by a local field theory as 
well. The price to be paid is the loss of the a priori intrinsic geometrical 
interpretation. Conversely, this unconventional point of view offers more 
room for modifying the theory if experimental results some day require such 
a change. In any case, within this framework, G keeps its pre-Einsteinian 
type-B status, on the same footing as other coupling constants. 

Let us, from now on, concentrate on the universal physical constants 
(type-C). 
 
2. - The fate of universal constants. 
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2·1. Conceptual synthesis and analysis. In order to understand the role of the 
universal physical constants, let us consider the particular case of Planck 
constant h. It was first introduced into physics through the Planck-Einstein 

relationship, E = hν�. This relationship is customarily interpreted as 

associating an energy E with the frequency ν of an undulatory physical 
phenomenon. The connection thus established between a concept of particle 
mechanics, the energy of a discrete entity and one of wave theory, the 
frequency, leads to the idea of wave­particle duality in quantum physics, 
and, further on, to the philosophy of complementarity. Such an 
interpretation was quite natural in the early days of quantum theory, when 
one had to approach this new unknown theory from the old classical ones. 
Duality and complementarity served the very useful purpose of letting 
physicists use the classical concepts in the quantum domain as far as 
possible, while taking into account their limits of validity as imposed by 
these general principles. In such a way, many quantum results were 
obtained, or at least qualitatively understood, without using a yet-to-be-
developed full quantum theory. Most of Bohr's theoretical work is a 
magnificent example of such a line of thought. It is to be realized today, 
however, that quantum theory does exist and that its concepts, after a 
century of collective practice, are deeply rooted in the present common sense 
of working physicists. These concepts need no longer be approached from 
classical ones, but may, and should, be taken at their face value. Such an 
intrinsically quantum understanding leads one to recognize that the objects of 
quantum physics are not either waves or particles, as duality would want us to 
believe; they are neither waves, nor particles, even though they do exhibit, under 
very particular circumstances, two types of limit behaviour as (classical) waves, 
or ( classical) particles (see sect. 3.) It has been proposed to stress this 
ontological point by calling them “quantons” [13, 14]. Coming back to Planck’s 

constant, the relationship E = hν, according to this point of view, is not to be 
interpreted as linking two classical concepts, but rather as transcending them 
through their synthesis, to establish a new single concept with a broader 
scope. The quantum energy indeed is a new concept, since it associates to 

																																																													
‡ We will refrain here to discuss why the reduced Planck constant defined by 
! = h / 2π  yields a better “quantum constant” than the original Planck constant h (see 
[12]). 
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any physical state a whole spectrum of numerical values and has to be 
represented by a Hermitian operator, as opposed to the single-number function 
which represents energy in classical mechanics. Here again a new name should 
have been given to stress the emergence of this concept, as an intrinsic one. 
Energy and frequency then appear as two particular facets of a more general 
notion, each of which being the only visible one from either one of two quite 
specific points of view.  

The role t h u s  played by Planck constant in bringing together these two 
facets is characteristic of universal constants. Any universal constant may be so 
described as a “concept synthesizer”, expressing the unification of two 
previously unconnected physical concepts into a single one of extended validity. 
It will be shown below that classical constants such as k and J play exactly the 
same role. In any case, the same analysis may be applied to c, one use of which, 

for instance, is to bring together the concepts of spatial intervals Δ x, on the one 

hand, and time intervals Δ t, on the other hand. These are but two aspects of 

the more general notion of a space-time interval Δ s = (Δ t2- c - 2Δ x2)1/2, which 
reduces to one or the other under special circumstances. Any universal constant 
usually brings about several such synthetical concepts. Planck constant also 
unifies momentum and wavenumber through the de Broglie relationship 

p = h/λ , while c unifies mass and energy through the Einstein relationship 
E = c2m. This is easily understood, since any physical concept by essence belongs 
to a theoretical framework which relates it to other concepts. The synthesis of 
two concepts thus is a local aspect of a more global unification of two pre-
existing consistent theoretical structures. Bringing them into contact at one 
point usually requires the fitting together of other parts as well. This is what 
happens  when the spatio-temporal consistency of particle mechanics, on the 
one hand, and wave theory, on the other, requires h to play the same role with 
respect to momentum and wave number (space aspect ) as it does with respect to 
energy and frequency (time aspect). Fully endorsing this point of view may lead 
to a better understanding of the new concepts. For instance, it enables one to 

stress that the de Broglie  relationship, p = h/λ, exhibits the intrinsically 
nonclassical nature of the quantum concept it establishes. Indeed, the classical 
wavelength is independent of the reference frame, or Galilean invariant, while 
the momentum of a classical particle with mass m changes according to 
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p' = p + mv, under a change of Galilean frame with velocity v. The de Broglie 
relationship thus seems inconsistent with Galilean invariance, that is, with 
the structure of space­time in ”nonrelativistic” physics [15]. This pseudoparadox, 
far from dis­ missing the de Broglie relationship as Lande maintained, points to a 
conceptual difference between classical wave number which indeed is Galilean 
invariant, and quantum ”wave number” which is not [16]. The quantum “wave-

length” transforms according to 1/λ’ = 1/λ + mv/h, which does not reduce to the 

classical limit λ’ = λ, when h “goes to zero” (see below, section 3). This fact is related 
to the quantum “waves” being represented by complex numbers, in 
contradistinction to the real amplitudes of classical waves (whether they be 
acoustical, or hydrodynamical). As another example of the accent put on the 
conceptual nature of h as a building tool of quantum theory, one may write a third 
relationship on the same footing as the Planck and de Broglie relationships, but 
concerning now the angular momentum which leads to a heuristic 
understanding of the discretization of the quantum angular momentum [17]. 

Universal constants thus express synthetical transcending not of isolated pairs of 
concepts, but of whole conceptual arrays. In this sense, a universal constant is a 
“theory synthesizer”, more than a mere “concept synthesize”. From this abstract 
point of view, the various specific syntheses expressed through a universal 
constant between various pairs of concepts belonging to two theoretical frameworks 
are but equivalent consequences of the general theoretical unification of these 
frameworks. Nevertheless, because of historical considerations and epistemological 
motivations, they are not actually given an equal status, especially in educational 
practice. Some of them are taken as a starting point or fundamental hypothesis, 

such as E	= hν, or Δ s = (Δ t2- c - 2Δ x2)1/2, while other ones are considered as derived 

relations, or consequences, such as p = h/λ, or E = c2m. Since one has to start 
somewhere, it is probably true that the equivalence of all such expressions, as 
reflecting various aspects of one and the same synthetical process through a 
given universal constant, is bound to remain a rather abstract statement. Its 
acceptance, however, may pave the way to a modification of the traditional 
hierarchy. As an example, it has been proposed to develop Einsteinian relativity 
by starting directly from the mass-energy relationship E = c2m, by building upon 
it the “relativistic” concepts of energy and momentum, and then by deriving from 
them the theoretical structure of space-time [18]. After all, this corresponds more 
closely to the real needs of physics where the Lorentz-transformation formulae or 



JMLL,	“Fundamental	Constants”	(2015)											10	

invariant expressions are actually more often used for momentum-energy 
quantities than for space-time ones. Moreover the role of c in relating energy 
and inertia (rather than mass) is deeply rooted in the immediate prehistory of 
Einsteinian relativity, and “could” have been the starting point of an alternative 
historical path towards this theory. These considerations, clearly, are of some 
epistemological and pedagogical importance [19]. 

We are now in a position to answer the question of the existence of 
universal constants in physics as distinct from other sciences. This is simply 
due to the fact that in physics alone do the scientific concepts show an 
intrinsically mathematical expression. In physics, mathematics does not 
simply apply; it plays a far deeper, constitutive role [20]. The identification, 
or synthesis of two concepts in physics thus requires first their mathematical 
nature to be identical (scalars or vectors, for instance) and then implies the 
existence of a proportionality factor. Let me stress that numerical 
measurements of a given quantity, as may exist in other sciences (even social 
ones), are not sufficient to endow it with mathematical constitutivity; it is 
necessary that there exist nontrivial mathematical relationships between 
several such quantities, expressing the “scientific laws” of the field. 

But the role of universal constants in the synthesis and unification of 
previously unrelated concepts or sets thereof, if it is the prime one in historical 
order of appearance, has for a corollary the fact of their leading to split and 
separate previously fused, if not confused, concepts. Two simple examples in 
relativity theory may be given here. The first one deals with the impossibility in 
Einsteinian relativity of a concept with the following two properties possessed by 
the velocity in Galilean relativity: i) being an additive quantity, obeying the 
simple composition law v12 = v1+ v2, and ii) giving the time rate of spatial 
change, namely v = dx/dt, for uniform motion. In Einsteinian relativity, if the 
second property is used as a definition of what we will keep calling “velocity” v, the 

first one will hold true for another quantity, the so-called “rapidity” ϕ. The 

two quantities are related by v = tanhϕ, or, with dimensional notations, by 

v = c tanh(ϕ/c), which makes apparent their fusion in the limit c → ∞. The 
introduction of the concept of rapidity is of a major help for educational 
purposes [21]. It not only yields a more compact and more significant 
expression for Lorentz transformations via hyperbolic functions, but it 
explains away the pseudoparadoxes associated to the idea of a limiting 
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velocity or nonadditivity of velocities, as simply due to a bad choice of 
parameter, such as would occur if rotations were labelled through the 
tangent of the angle instead of the angle itself. In recent decades, the concept 
of rapidity has also been fruitfully used in high-energy phenomenology§. A 
similar clarification may be achieved in relativistic dynamics, by introducing, 
with the concepts of energy and mass, the one of inertia, defined as the 
coefficient of the velocity in the expression for the moment. It is seen then 
that inertia is to be identified with energy in Einsteinian relativity, but with 
mass in Galilean relativity. The occurrence of the universal constant c thus 
splits inertia from mass as it fuses it with energy. In the description of space-
time, the splitting of the categories of simultaneous pairs of events from that 
of null (lightlike) intervals may be interpreted in quite the same way. Other 
examples can be found at will. To use the same material metaphor as above, 
it may be said that the fitting of two conceptual structures, while bringing 
into contact previously separated pieces, also generates stresses requiring 
various splits within the new body. 
 

2·2. Units and unity. It is an elementary, but crucial remark that the role of 
a universal constant as underlying the foundations of new concepts 
systematically decreases in importance when time goes on and the novelty of 
the concepts fades away. Indeed, when a sufficient familiarity has been 
acquired through years of experimenting, theorizing and teaching, one no 
longer needs to reach these concepts through the relationship of the ancient 
ones as synthesized by the universal constant. One simply uses the concepts 
as such. The constant then appears as a mere numerical conversion factor, 
enabling one to express a given physical quantity in terms of various units. 
No deep conceptual role is any more attributed to the constant, since the 
synthesis it symbolizes is, so to speak, achieved from the start. In other 
words, the theoretical status of a universal constant decreases as its practical 
importance increases. A good example of this situation is afforded by the 
classical thermodynamical constants J and k. The first one served to unify 
heat with work through the relationship W = JQ , while the second one 

																																																													
§ Just ask Wikipedia for “rapidity” and “particles” and find many examples. See for 
instance C.-Y. Wong, Introduction to High-Energy Heavy-Ion Collisions (World Scientific 
1994), p. 24  
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showed that temperature was but a statistical aspect of kinetic energy, as 
expressed by E = kT (up to some numerical factor depending on the number of 
degrees of freedom). Of course, as emphasized earlier, J and k not only 
introduced new concepts, but whole new theories: thermodynamics for the 
first one, statistical mechanics for the second. We are so accustomed today to 
these ideas that they are incorporated into the implicit background of physical 
theory. Theoreticians almost automatically choose a convenient system of units 
such that k = 1, since they know that energy and temperature, or work and 
heat in fact are (now) but a single concept. In such a way, these constants 
grad ually fade out of sight in quite a literal sense: less and less are they 
written in formal expressions. From this point of view, it is seen that J and k 
indeed are universal constants, in the very same fundamental way as h or c. 
Only does our long collective practice of the concepts they express enable us to 
forget about their nature and to consider them as mere conversion factors. It 
must be said that such a process today is well under way concerning h and c. 
While all textbooks and articles in the first decades of the 20th century kept a 
detailed record of all h’s and c's in their formulae, it is the common use today 
to take them as unity, which only means adopting a more adapted system of 
units. This convention has become almost tacit in the recent years, so that, 
except perhaps at the educational level, it will soon be obvious, that there is 
no difference of nature between h or c, on the one hand, and k or J, on the 
other. 

This then is the ordinary fate of universal constants: to see their nature as 
concept synthesizers being progressively incorporated into the implicit common 
background of physical ideas, then to play a role of mere unit conversion factors 
and often to be finally forgotten altogether by a suitable redefinition of physical 
units. Once this is realized, one may well ask how many of these forgotten 
universal constants are lying around. Let us recall here the ”Parable of the 
Surveyors” due to Taylor and Wheeler [21]: 

 
«Once upon a time, there was a Daytime surveyor who measured off the king's lands. 

He took his directions of north and east from a magnetic compass needle. Eastward 
directions from the centre of the town square he measured in meters (x in meters). 
Northward directions were sacred and were measured in a different unit, in miles (y in 
miles). His records were complete and accurate and were of often consulted by the 
Daytimers. 
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Nighttimers used the services of another surveyor. His north and east directions were 
based on the North Star. He too measured distances eastward from the centre of the town 
square in meters (x' in meters) and sacred distances north in miles (y' in miles). His records 
were complete and accurate. Every corner of a plot appeared in his book with its two co-
ordinates, x' and y'. 

One fall a student of surveying turned up with novel openmindedness. Contrary to 
all previous tradition, he attended both of the rival schools operated by the two leaders 
of surveying. At the day school, he learned from one expert his method of recording the 
location of the gates of the town and the corners of plots of land. At night school, he 
learned the other method. As the days and nights passed, the student puzzled more and 
more in an attempt to find some harmonious relationship between the rival ways of 
recording location . He carefully compared the records of the two surveyors on the 
locations of the town gates relative to the center of the town square. 

In defiance of tradition, the student took the daring and heretical step to convert 
northward measurements  previously expressed always in miles, into meters by multi­ 
plication with a constant conversion factor, K. He then discovered that the quantity 
[(xA)2 + (KyA)2]1/2 based on Daytime measurements of the position of gate A had exactly the 
same numerical value as the quantity [(x’A)2 + (Ky’A)2]1/2 computed from the readings of the 
Nighttime surveyor for gate A. He tried the same comparison on the readings computed 
from the recorded positions of gate B, and found agreement here too. The student's 
excitement grew as he checked his scheme of comparison for all the other town gates and 
found everywhere agreement. He decided to give his discovery a name. He called the 
quantity [(x)2 + (Ky)2]1/2 the distance of the point (x, y) from the centre of town. He said that he 
had discovered the principle of the invariance of distance; that one gets exactly the same 
distances from the Daytime co-ordinates as from the Nighttime co-ordinates, despite the 
fact that the two sets of surveyors' numbers are quite different.» 

 
Now we may realize that there is at least a most important universal 

constant in the simplest of all physical theories, namely plane Euclidean 
geometry. This constant expresses the theoretical assertion of space isotropy, 
enabling us to synthesize the concepts of northward and eastward distances into 
the single general concept of distance, independent of the orientation. Obviously, 
the numerical value of the constant K is without physical significance and due to 
mere historical contingencies. Its very existence, however, is a fundamental aspect 
of geometry. It is quite clear that, in due time, both distances, eastward and 
northward, in the town of the parable came to be measured with the same unit, 
so that the constant K disappeared and the discovery of the bright student faded 
into oblivion: was it not an “obvious” result?  

This parable was intended by its authors to stress, and rightly so, the analogous 
role played today by the constant c with respect to space­time. But the parable of 
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the surveyors also compels us, conversely, to unearth many of these forgotten 
universal constants, incorporated as they are into what now seems to be 
immediate truth, but was once the object of a lengthy and difficult working out. 
Another purely geometrical example is given by the evaluation of areas. Indeed let 
us choose a unit of area, as the area of some arbitrary plane figure, for instance an 
average human hand palm. It is then a “law of physics” (or a theorem of geometry) 
that the area A of a square with a side of length L, measured with some length 

unit, for instance the foot, is given by A = αL2, where α is some universal constant 

(with our units its value is roughly α = 0.11 hand palm per squared foot). One then 

redefines the unit of area as the area of the square with unit side, so that α vanishes 
from sight. It should not be forgotten, however, that this constant expressed the 
now “obvious” synthesis of areas with squares of lengths. The same could be said of 
volumes, of course, and is not without factual relevance today. After all, the 
Anglo-Saxon traditional units of volumes, gallons or pints, are not defined by 

cubing the lengths units, foot or inch; the universal constant β entering the 

relationship V = βL3 has not been taken as unity. We will see below that even 

within the scientific metric system, the constant β cannot be forgotten altogether. 
Now it should be clear that many such hidden universal constants lie at the core 
of the main statements of classical physics, at most in the oldest theories such as 
geometry or Newtonian mechanics, in which a long practice has led to the 
complete incorporation of their significance at an all­implicit level. The absence 
of universal constants in this part of physics is but an apparent privilege of old 
age. One might thus classify the universal constants (type-C above) into three 
subclasses according to their historical status: 

i) the modern ones, such as h and c, the conceptual role of which is still 
dominant, 

ii) the classical ones, such as k or J, which today appear essentially as unit 
conversion factors, their conceptual role having become almost implicit, 

iii) the archaic ones, which have been so well assimilated and digested as to 
become totally invisible.  
 

2·3. The point of view of practice. The story, however, is not that simple. It is 
only from the theorist's point of view that the life of a universal constant 
reaches the happy end of such a drift into the Nirvana of unity and oblivion. 
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The experimentalists working in the laboratory, when making 
measurements, must use concrete definitions of their units and cannot at will 
identify two operationally independent standards as the theorists on the 
paper do. It is a fact that, whatever fundamental system of units is adopted, 
based on the theoretical knowledge of the time, the use of units belonging to 
various other previous systems adapted to such and such domain of physics 
cannot be eliminated together. There are two reasons for this state of affairs. 
The first one is historical social inertia, which, for instance, forces the 
experimental physicists on the West side of the Atlantic to plan and order the 
nuts, bolts, plates, rods, etc. of their apparatus, by stating their dimensions in 
feet and inches rather than in metres and centimetres. The universal constant 
x entering the relationship Lus = LEU between the length of some object in the 
United States and the length of the same one in Europe (so that the 
subscript “EU” refers to us, while “US”  refers to you) thus can be taken as 
unity in principle — but in principle only. This constant, once more, does 
expresses a fundamental law of physics, namely the homogeneity of space, 
enabling one to define the concept of length of an object independently of its 
location. But there is a second reason for the persisting of nonorthodox units, 
which is due to the nature of experimental physics proper, of which 
metrology is a fundamental aspect. Once a system of units is chosen (such as 
the modern International System of Units), every unit of a physical 
magnitude not belonging to the fundamental ones may be derived from the 
fundamental units. However, these derived units are often defined in such a 
way as to be of a very awkward use, or even as to lack the required precision, 
in a given domain of physics. Easier and better measurements may be done 
with the use of an independently defined local system of units. It then 
remains as a task for experimental metrology to relate these local units to the 
fundamental system through the experimental determination of conversion 
factors, which, as shown before, are nothing but genuine universal constants. 
A simple example may be given here. Before 1964, the litre as a unit of 
volume was defined independently of the length unit (metre) as the volume 
of a kilogram of water at 4°C. The relationship between volumetric 
measurements in litres and linear measurements in metres thus required the 
experimental determination of the universal constant in the relationship 

V = βL3 between volumes and lengths; the value of this constant was β 
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= 1.000028 ± 0.000004 litre·dm-3, which, of course, could be taken as 
unity — by the theorist**. It must be pointed out that the “noble” universal 

constant c is not, different in principle from the “trivial” β above. At the 
experimental level considered here, it is to be realized that the possibility of 
direct measurements of c only comes from it being also a type-A constant ; 
a direct determination of the velocity of photons thus leads to the value of 
c. But if there did not exist particles with zero mass (or approximately 
zero [9]), such a measurement would be impossible and c would have to 
be indirectly determined by relating measurements of electrostatic and 
magnetostatic quantities, or of lengths and frequencies. Such indirect 
determinations of c in the past sometimes have yielded the better values 
available at the time [22]. The present point in fact has been expressed by the 
best craftsmen themselves, such as Cohen and DuMond [23].  

Exactly as the practical imperatives of experimental physics prevent a naive 
dismissing of “classical” constants by a change in unit conventions, more 
general social conditions can impose the persistence of “un­ natural” archaic 
constants. Two simple historical examples of such a situation can be offered.  

The first one is, once more, the question of volume measurements. Its 
scientific, metrological aspect, discussed earlier, corresponds to a much more 
general fact, valid since the highest antiquity; namely volumes usually are not 
determined by geometrical means from length measurements. Indeed, most 
volume determinations in practical life concern flowing materials, liquid or 
granular, such as beverages or grains (solids are mainly considered according 
to their weight). This is why independent volume units, defined by the 
capacity of some standard containers, have been the rule until the advent of the 
metric system (and thereafter — see above). For instance, in the Anglo-Saxon 
system, it has been said, pints are not related to inches. As a consequence, even 
though, as far as order of magnitudes are concerned, the volume unit usually 
has been comparable to the cube of the length unit, there was no real need to 
redefine these units in such a way that the appropriate universal constant be 
unity††. Surface measurements offer a comparable instance, with special units 
																																																													
**	Nowadays, the litre has been redefined so as to be identical with the 
cubic decimeter (see 
http://www.bipm.org/jsp/fr/ViewCGPMResolution.jsp?CGPM=12&RE
S=6).	
††	An account of  this  situation has been given by Casimir in a 
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for land areas, although it is much less marked than for volumes since most 
determinations of surfaces have been done through length measurements by 
geometrical means, in all known historical periods.  

The second example is furnished by the constant expressing the homogeneity 
of space, that is, the possibility of using the same units of length at each and 
every point of space. Apart from the case of the Anglo-Saxon system, this 
constant is now almost universally taken as unity, due to the international 
adoption of the metric system. This is a recent occurrence on the historical 
scale, however, and beyond a doubt came about very much later than the 
theoretical understanding of that possibility. The point is that such a unification 
was not necessary since space indeed was heterogeneous, socially, if not 
geometrically. Localized and rather autonomous social entities, from tribes to 
cities, were the rule in the human society until less than a few centuries ago. 
The progressive unification of the social space is related to the rise of merchant 
and industrial capitalism. It is the need of this new social order which brought 
about the redefinition of local units of lengths, so that the corresponding 
universal constant took on the status of an archaic one‡‡. 

 
3. - The case of the vanishing constants. 
 

3·1. How to vary a constant. Universal constants not only play a role as 
standards of definition and measurement for physical quantities. They are further 
used as standards of validity for physical theories. This aspect is usually 
summarized by statements such as: “Galilean relativity is obtained from 

Einsteinian relativity in the limit c → ∞”, or “quantum mechanics goes into 
classical mechanics when Planck constant vanishes”. Now these clearly are 
rather loose assertions, which are of formal significance at most, as they bear 
upon purely mathematical limiting processes imposed to the equations of the 
																																																																																																																																																																																														
humorous parable i l lustrating the problem concerning electrical  
units  inside dielectric  media [24] . 	
‡‡	Let us not forget, though, that there are some domains where, for good reasons, 
horizontal and vertical distances are not measured with the same unit, such as air 
travel, where height are expressed in feet and lengths in miles. Better not to confuse 
them! More generally, quite a number of recent technological accidents have been 
due to errors in units conversions. Thus, in September 1999, the NASA Mars Climate 
Orbiter craft was lost due to a ground based computer software which produced 
output in non-SI units of pound-seconds (lbf s) instead of the metric units of newton-
seconds (N s) used by the craft [25]. 
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theory. But in the real world, the universal constants take on definite values 
and one is not free to change them at will. A better way of expressing these 
ideas is to assert the validity of Galilean relativity (respectively, classical 
mechanics), whenever c (respectively, h) can be considered as very large 
(respectively, small). One, however, has to be more accurate: large (or small) 
with respect to what? ln the case of relativity, it is usually stated that the 
Galilean theory holds good, whenever the velocities are small with respect to c. 
But this is a necessary condition only, and it may be shown that it is not 
sufficient. Lorentz transformations with velocities small compared to c are 
approximated by Galilean ones, only for spatio-temporal intervals (or, more 
generally, four-vectors) which are of “large timelike” type, that is, such that 

Δx << cΔt. In the opposite case, that is for intervals (or four-vectors) of of 

“large spacelike” type, that is, such that Δx >>  cΔt, an alternative limiting 
behaviour is obtained, giving rise to a second “nonrelativistic” limit of the 
Poincare group, the Carroll group [26] (see below). True, the space-time intervals 
concerned by such transformations, as, for instance, the interval between your 
reading of the next comma here and now and the emission within a second of 
a photon from some far-away star at a distance of two thousand light­years 
from home [27], are between events with no possible causal connection, 
precisely because of the large spacelike nature of these intervals. The Carroll 
group thus, necessarily applies to an acausal world  (hence its name) and its 
physical relevance is dubious, to say the least (unless tachyons exist, the 
“nonrelativistic” properties of which could then be described through a Carrollian 
theory). 
However, the very existence of the Carroll group, a well-defined and consistent  
mathematical, if not, physical object, serves to point out the necessity of a more 
stringent statement about the condition of validity for the Galilean 
approximation in relativity theory. It is to be required in effect that all relevant 

physical quantities with the dimensions of velocity (LT-1) be small compared to 

c, that is, not only actual velocities of moving objects, but ratios of spatial to 
temporal intervals, of energies to momenta, etc. The necessity of such a 
general explicit condition may have been blurred by the narrow 
interpretation of c as a mere velocity (see above). Once it is recognized as a 
truly universal constant, it clearly acts as a standard of comparison for all 
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physical quantities with the same dimensionality. At least is this requirement 
imperative if one is to set up a consistent theory. Weaker requirements may 
be sufficient to deal with specific situations. As an example, consider the 
transformation properties of electromagnetic fields under Lorentz 
transformations. If the velocity is low enough compared to c, the following 
formulae hold good:  

E’ = E - vxB ,  B' = B - c-2vxE.     (1) 
Now these formulae cannot fit into a full theory of electromagnetism in 
agreement with Galilean relativity [28]. In such a theory, two types of 
electromagnetic fields may exist with respective transformation properties: 
 E’ = E - vxB, B' = B     (2) 
 or  

E’ = E, B' = B - c-2vxE.      (3) 
It is clear that (2) or (3) is valid depending on the fact that, in addition to v << c, 
one has either E/B >> c or E/B >> c. These remarks, obviously, are related to 
the idea stressed earlier that a universal constant does not underlie a single 
concept, but a whole theoretical framework. 

The situation has been clearer in that respect for quantum mechanics. Since h was 
never confused with a type-A constant (the “spin of light”…), from its universal 
nature it was rightly inferred that it had to be small compared with all 
relevant physical quantities with the dimension of an “action” (dimensionality 

ML2T-1) for classical mechanics to be approximately valid. There is, however, a 

number of unsolved problems about the relationship of quantum theory to its 
classical limit(s), as will be mentioned below.  

Another way of expressing the smallness (or largeness) of some universal 
constant in a given physical situation is to consider the units appropriate to 
the description of that situation, that is, if they exist at all, units such that all 
of the physical quantities take on “reasonable” values, spanning a limited range 
around unity. If the universal constant, when expressed with these units, is very 
small (or very large), then the approximate theory is valid which corresponds to 
the limit in which the constant goes to zero (or to infinity). This is clearly the case 
in the two examples mentioned up to now, where h takes on a very small value 
and c a very large one, when expressed in any system of units adapted to our 
daily experience (whether it be SI, or CGS, or the traditional Anglo-Saxon 
non­ metric system). 
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The last remark, trivial as it may seem when applied to our modern familiar 
and revered universal constants h and c, may be of some help in under­ 
standing the historical reasons for the emergence, and later subsidence, of most 
universal constants, including the classical and archaic ones. Indeed, for c to 
appear as a universal constant, it was necessary for experimental investigation to 
come to grip with some phenomenon where at least one combination of 

physical quantities with dimension LT-1 was comparable to c. This required a 

stage in the development of experimental techniques which was not reached 
until the 17th century with the first. measurements of the velocity of light [22]. 
Spatio-temporal ratios were for quite a time the only magnitudes with the 
required dimensionality to be measured with the necessary precision, so that c 
could not appear but as a type-A constant: the velocity of light and nothing 
more. It was not well until the 19th century that other physical magnitudes, 
namely electromagnetic ones, could be measured with a sufficient precision. 
Magnetism, after electricity, was subjected to accurate definitions and 
measurements, and the remark was left to Kirchhoff and Riemann that the 
combination of electric and magnetic constants which in modern formulation we 

would write as (ε0µ0)-1 was quite close to the speed of light§§. This first hint that c 
could well be at least a type-B constant, characteristic of electrodynamics in 
general, was confirmed by Maxwell’s achievement of a consistent theory. By the 
beginning of this century, experimental progress had been such as to yield a vast 

number of combinations with the dimension LT-1, the values of which were no 

longer small with respect to c; not only ratios of space to time intervals, but also 
of electric to magnetic field strengths (starting with Hertz experiments on 
electromagnetic radiation), products of frequencies and wavelengths, ratios 
(square root of) of energies to masses (in the energetics of nuclear reactions), of 
energies to momenta (dynamics of charged particles), etc. As for h, its existence 
could not be inferred before the possibility of investigating phenomena where 
characteristic “actions” were small enough and could be determined with a 
sufficient precision. The first of these turned out in spectroscopic studies when the 
black-body spectrum was studied at temperatures such that the maximum in 
																																																													
§§	G. Kirchhoff, “Ueber die Bewegung der Elektricität in Leitern”, Ann. Phys. 
Chem. 102, 529-544 (1857). 
G.F.B. Riemann, “Ein Beitrag zur Elektrodynamik”, Annalen der Physik und Chemie, pg 
131 (1867). 
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the energy of the emitted radiation fell into an accessible range of wavelengths; 

namely, for Wien's laws to be discovered, the combination kTν-1 = kTλc-1 of the 
physical parameters under control had to be small enough to become 
comparable with h. Then the photo­electric effect disclosed as well the presence 
of Planck constant when the emission of ultraviolet radiation was mastered: the 
ratio of the kinetic energy of liberated electrons to the frequency of the 

radiation, that is Eν-1, could be measured with an accuracy enabling it to be 
compared with h [12]. As far as classical universal constants are 
concerned, now it is seen why J could not appear before the 19th 
century. The theoretical definition and experimental measurement of heat 

had to be pushed up to the point at which heat quantities ΔQ could be 

exchanged and measured, such that JΔQ would no longer be negligible 

compared to the amounts of work ΔW commonly occurring [29]. The 
development of heat engines, such as the steam machine first, the progresses 
of physiology as well and, simultaneously, the improvement of 
thermometry and calorimetry, then led to the recognition of the 
”equivalence” between heat and work — one should better say their 
synthesis into a broader concept of energy — by Joule, Mayer, Helmholtz 
and others [30]. 

The hidden character of what was called above the archaic universal constants is 
readily understood from the present point of view. From the very physiological 
characteristics and social practice of humanity it follows that isotropy of space, for 
instance, has probably been incorporated right from the beginning in the use of 
one and the same unit of length for measuring distances in all directions. By a 
blending of Taylor and Wheeler's earlier “Parable of the Surveyors” [21] with 
Abbott's well-known novel, Flatland [31], one could imagine, however, a science-
fiction story of an almost-flat species of intelligent beings. From their direct 
experience of the world, they could apprehend it on a scale of , say, metres in 
horizontal planes, but micrometres only in vertical directions. They would certainly 
use respective units with such a 106 ratio for their daily needs in vertical and 

horizontal-length measurements. The equivalence of vertical displacements Δz and 

horizontal ones Δl through a very small universal constant η = 10-6 µm-1 would 
only be discovered by building telescopes giving access to vertical distances 

much larger (in the ratio 106 = η-1) than the ordinary heights in this world; 
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alter­ natively, it could be brought to light by the investigation of 
microscopic horizontal displacements. Conversely, it is clear that two-
dimensional physical theories, whether they be purely conceptual exercises 
or approximate descriptions of some physical phenomena, are in the same 
relationship with full three­dimensional theories, as, for instance, Galilean 
relativity to Einsteinian one, or classical physics to quantum physics. For 
such a two-dimensional theory, say, to be valid, all quantities with the 
dimensions of the ratio between a “vertical” and a “horizontal” length must 

be small compared with the universal constant η. In our conventional 

systems of units, of course, η is equal to unity and we recover a more 
customary statement for the validity of such approximate theories. 
 

3·2. The limitations of limits. Let us now come back to our conventional modem 
universal constants in order to examine more closely the significance of limits 

such as h → 0, or c → ∞. We have already stressed that the constants in fact are 
constant and that, physically, the limits obtain when the dimensional ratios of 
the relevant physical quantities, say A/B, are small (or large) compared with the 
universal constant K which relates (synthetises) the two quantities A and B. It 
remains true that, in the formal expressions of the theory, this corresponds to 
considering the dimensionless ratio KB/A as large (or small), a situation which 
may be obtained as well giving a large (or small) value to the “constant” K. But 
several comments must be made to emphasize the limitations of these limit 
processes, which must be handled and interpreted with some care, if one is to 
avoid, or to correct, misunderstandings and delusions; the unicity, singularity 
and validity of such limiting processes will be investigated in turn. 

i) Unicity. Contrarily to a naive idea, a given theory does not necessarily 
possess a unique more restricted theory as a limit. This is most clearly seen when 
the theory is expressed in its natural units, in which the universal constant is 
taken as unity to fully express the concepts of which it underlies the synthetic 
nature. For then, there is no longer any apparent dimensional constant that 
might go to zero, or infinity. One has to deal directly with the relevant ratios of 
physical quantities (dimensionless here), the choice of which must be guided by 
physical considerations. In other words, there are several inequivalent ways to 
reintroduce a constant in the theory, and several corresponding theories when 
the constant is eliminated through a limit process. The different possibilities deal 
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with differing physical situations. A simple example of this point is furnished by 
Einsteinian relativity, as already mentioned. Let us write the Lorentz-

transformation formulae for space-time intervals (Δx, Δt) in units such that 
c = 1 

	 Δx’ = γ	(Δx - vΔt)      (4a) 

 Δt’ = γ (Δt - vΔx)      (4b) 

where, as usual, we have defined γ = (1-v2)-1/2 , v being the velocity of the 
transformation. It is immediately apparent that the condition v << 1 is not 
sufficient to yield the Galilean transformations 

	 Δx’ = Δx - vΔt      (5a) 

 Δt’ = Δt.       (5b) 

One must require in addition that Δx << Δt, that is that the intervals be of 
large timelike type. This second condition is necessary for the second term in 
the equation (4b) to be neglected. If it does not  hold, one may only write 

	 Δx’ = Δx - vΔt      (6a) 

 Δt’ = Δt - vΔx      (6b) 
These, as already said, may be useful approximate formulae in some 
circumstances, but cannot be the basis of a consistent relativity theory, since 
they obey no group law and hence no principle of relativity. Now the obvious 
symmetry of (4a) and (4b) of (4a) suggests a second limit, when v << 1 and 

Δx << Δt. These low­velocity transformations of large spacelike intervals read 

	 Δx’ = Δx       (7a) 

 Δt’ = Δt - vΔx.      (7b) 
They do obey a group law, defining the so-called Carroll group, already alluded 
to [26]. The Einsteinian relativity thus possesses two quite different 
“non­relativistic” limits, the Galilean and the Carrollian ones. That the second 

one cannot derive from the usual limit c → ∞ is due to the fact that the 
conventional dimensional expression of the Lorentz transformation is such as 
to exclude a Carrollian situation right from the beginning.  Indeed the 

replacements v → v/c and Δt → cΔt which enable one to recover the usual 

expression from (4) are such that Δx/Δt → Δx/cΔt which necessarily goes to zero 

(large timelike type) along with v → v/c, when c → ∞, leading to the Galilean 
transformations. If one was to ”dimensionalise” the Lorentz transformations (4) 
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through the replacements v → v/c’, but Δx → c’Δx, now the limit c’ → ∞, would 
yield the Carrollian transformations (7). The point clearly is that the conventional 

limit c → ∞ is of a rather tautological nature, since it corresponds to following the 
evolutionary track of relativity theory in a time-reversed order. It is no surprise 
that it brings one back to the point of departure, that is the Galilean theory. If 
one is to study the possible limits of a theory, one must start from this theory as 
such, expressed within its autonomous system of concepts and intrinsic units. 
Once more it is seen how much the universal constants, even in the very most 
technical formulae, bear the mark of the historical developments of physics. The 
Carroll group probably is of little physical interest, so that the above 
considerations might seem of academic significance. A study of the 
nonrelativistic (Galilean) approximations to Maxwell's equations, however, 
leads in much the same technical way to realise that there exists two relevant 
physical limits [28]. There are two Galilean electromagnetisms, depending on 
whether it is the ratio of electric to magnetic fields, E/B, that is supposed to be 
small (in dimensionless units), or its inverse. Not surprisingly, one of these 
limits deals essentially with electric effects, the other one with magnetic 
effects. It must be mentioned, however, that both go beyond conventional 
electrostatics and magnetostatics in that they include, for instance, induction 
phenomena. It is to be said also that possible, more complicated and more 
interesting Galilean theories of electromagnetism exist which are not limits of 
Maxwell theory, in very much the same way that there exist “nonrelativistic” 
relativity groups which are not limits of the Lorentz group, such as the Newton 
groups [32]. A very elementary example of the existence of two different 
limits for a given theory is given by ordinary three-dimensional geometry. In 

writing the spatial interval (Δr)2 = (Δx)2 + (Δy)2 + (Δz)2  , a universal constant 
expressing the commensurability of horizontal and vertical lengths may be 
re-introduced in either of two ways. One may rescale the vertical lengths 

according to the replacement Δz → HΔz, or the horizontal ones by Δx → H’Δx, 

Δy → H’Δy. The limits H → 0 and H’ → 0, respectively, give rise to a two-
dimensional plane geometry (see our previous parable) or to a one-dimensional 
linear one. I will comment below on the case of quantum mechanics and the 

limit h → 0, since the situation is much less clear. However, it is well known in 
advance that quantum theory at least has two classical limits, dealing 
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respectively with waves  and corpuscles. 

ii) Singularity. Kuhn has argued that the history of science proceeds 
through  “scientific revolutions, in between which scientific activity would consist 
of “normal science” [33]. These revolutions would bring about the 
replacement of old paradigms by new ones, such that the ideas and concepts 
would undergo radical changes. For instance, mechanics is supposed to be so 
affected by the Einsteinian revolution that our ideas on space-time 
kinematics and dynamics have nothing· in common any more with those of 
Newtonian  physics. Such strong statements, obviously, are contrary to all our 
experience as inquiring and teaching physicists. The difficulty here is that of 
the apparent dilemma between a continuous view of the history of science 
which would deny any qualitative change, and a discontinuous one which, 
ultimately fails to interpret, the process of change from one stage to the other. 
This is not the place to attempt a global evaluation of Kuhn's sociological 
history of science. One restricted aspect of his views, however, is closely related 
to the present investigation, namely the nature of the relationship between two 
successive paradigms in a given scientific domain. Taking  as an example 
Kuhn's one of Einstein vs. Newton mechanics let us try to put it into 
perspective. This historical perspective, it, must he emphasized first, needs a 
backwards look. Obviously, the relationship between some physical theory and 
a more general successor cannot be studied until the generalization has 
succeeded. It is then necessarily from the point of view of the new, more 
encompassing, paradigm that the old one is to be judged. There is no vantage 
point, outer to both, from which their borderline could be seen and the 
transition analysed. We have to assess Newtonian mechanics starting 
from the Einsteinian one. In other words, the epistemological approach is 
necessarily opposite to the chronological one. It may be suggested then that this 
approach is that of a singular limit, in the mathematical sense. This statement, 
first, is certainly true at the factual level. Indeed the restricted theories, Galilean 
relativity or, more generally, Newtonian mechanics are obtained from the 
modern more general “relativistic” theory by a limit process which is 
necessarily singular. If it were not, the change would amount to a simple 
rescaling, without any conceptual modification. It is only in the limit in which c 
goes to infinity, and not when it is arbitrarily large but finite, that the old theory 
is recovered. In the case of relativity theory, a definite mathematical framework 
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exists, the theory of contraction of groups [34], showing how a continuous family 
of group isomorphisms depending upon some parameter may tend towards a 
singular limit, whereby a new, nonisomorphic, group is obtained. But the idea of 
the old paradigm as a singular limit of the new one is proposed here in a wider, 
metaphorical sense, as well. It may help understanding how the transition from 
one to the other, as expressed by the vanishing (or infinity) of some universal 
constants, brings about qualitative changes into the conceptual tools of the trade. 
Indeed, if a universal constant brings about the synthesis and the unification of 
two previously unconnected concepts, its vanishing must be shown to give rise 
to the converse dis­ junction, clearly a very singular phenomenon. This is the 
only way to under­ stand, for instance, how the quantum energy-pulsation 
branches off into classical particle energy and classical wave pulsation. 
As another example, Einstein mechanics knows of only two conserved 
quantities, energy and momentum, while Newtonian mechanics imposes the 
further conservation of mass, but introduces another, nonconserved quantity, 
namely internal energy. In this case, clearly, it is the Einsteinian mass, which in 
the Galilean limit yields both a conserved mass m and nonconserved internal 
energy U; of course Einstein's role was precisely to operate the inverse synthesis 

through the relationship U = mc2 ! Let it be clear, however, that the singularity 
may be that of a coalescence of concepts as well as of a disjunction, since we deal 
here with the converse processes to both the syntheses and the splittings 
described above. But this aspect is rather trivial here, consisting for example in 

the merging of the rapidity ϕ with the velocity v = tanhϕ in the Galilean limit. A 
final remark, at a more restricted technical level, derives from the mathematical 
singularity of these limit processes, as considered through universal constants. 
Much care must be exercised in investigating the limit of some theoretical 
expression when a universal constant is washed out by letting it go to zero or to 
infinity. In particular, the units used to write this expression should not depend 
on the constant itself. Obvious as it may seem, this rule is violated, for instance, 
by the numerous statements to the effect that “the magnetic moment of the 
electron, namely µ = eh/2mc, is due to a relativistic phenomenon, because it is 
seen to depend on c” But this expression for µ is valid only in a system of units 
where the units of electric and magnetic field strengths are identical, which, as 
emphasized earlier, cannot be consistent with a Galilean theory. With different 
units, such as the SI ones for instance, the magnetic moment reads µ = eh/2m 
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and, being independent of c, should be indifferent to the divergences of 
opinion between Galilei and Einstein. Indeed, it may be shown that the 
correct value of the moment obtains as well in a minimal Galilean theory of 
quantum particles with spin ½ as in Dirac theory [35] (of course, this is because 
spin itself is still much less an Einsteinian concept). This result extends to higher 
values of the spin [36]. Simple dimensional considerations show, on the other 
hand, that higher multipole electromagnetic moments, such as exist for high-spin 

particles, do vanish in the Galilean limit in which c → ∞ (provided one consider 
elementary, structureless, particles, and not, for instance, composite systems 
such as the deuteron, of which the quadrupole moment owes nothing to 
Einstein, of course). Similar considerations may help in understanding the 
nature of the spin-orbit coupling for atomic electrons. It is usually said that the 
Thomas precession factor, due to an Einsteinian effect, halves the conventional 
coupling of the spin to the apparent magnetic field generated in the electron 
frame by the Coulomb field of the nucleus. It is very difficult, however, to accept 

that such a definite factor of ½  might go to 1 in the limit c → ∞ ! A more rigorous 
analysis, in fact, shows that both terms are due to Einsteinian relativity (or else, 
that in a more complex Galilean theory, they could both exist but be numerically 
independent). In other words, before assessing the nature of a given effect or a 
property as due to the specificity of some theory because of its disappearance in 
the limit theory obtained when the relevant universal constant vanishes, a 
careful dimensional analysis of the problem is necessary, which requires 
explicitly disentangling some commonly used conventions of units, when they 
precisely rely on the theory the limits of which one is to test. 

Let us end this section by an unfortunately half-baked idea which might be 
doomed to failure as an actual program, but should at least serve to underlie 
the highly singular nature of the limit processes on universal constants. The 
point is that, as already mentioned, we usually consider these limits in full 
knowledge of the resulting theory we want to obtain. The surprise, then, is 
meagre. Some exceptions have been mentioned (Carroll group, Galilean 
electromagnetism). But consider a more complicated process in which two 
universal constants simultaneously are pushed out of the theory. Specifically, let 

the dimensionless “fine structure” constant of electrodynamics α = e2/hc keep its 

value, while c → ∞ and h → 0 simultaneously. The result, if there is one, should be a 
Galilean classical electrodynamics in which only all the quantities of Einsteinian 
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quantum electrodynamics depending on α would keep their values, such as the 
ratio of the electromagnetic moment to its bare value and all other results of the 
renormalization program. True, this bare value, that is µ = eh/2m, goes to zero 
with h, but why not to try computing directly the ratio of the dressed to the bare 
value, or even rescale m as well? It is very clear that such a theory, challenging as it is, 
requires a most careful analysis and re-writing of quantum electrodynamics; its 
singularity is certainly such as to brave any brute-force investigation. 

iii) Validity. The last point to emphasize is that the existence of a 
well­defined formal limit for a theory when some universal constant vanishes is 
in no ways sufficient to guarantee the physical relevance of this limiting theory. 
The Carrollian kinematics [26] here offers an elementary illustration, since it has 
probably no applicability whatsoever in physical situations. But quantum 
mechanics offers a much richer and deeper example [14]. Indeed it is a surprise 
to realize, after almost a century of quantum theory, how little is known on its 
classical limits. Even at the formal level, things are far from being clear. It is 
empirically and historically known that quantum theory has resulted from the 
transcending synthesis of classical wave theory and particle mechanics. One 
should then be able to recover both these theories as limits of quantum theory 
now taken as such. The classical particle mechanics limit has received some 
attention, and various illustrations, from the Ehrenfest theorem to the JWKB 
approximation, or the relationship with Hamiltonian formalism, may be given 
of the transition. Things are much less clear on the other side, concerning 
classical wave theory. Indeed, since the vanishing of the same universal constant 
h seems implied in both limits, some additional assumption has to be made. 
From the empirical point of view, it is to be realized that an approximate 
classical particle behaviour may be exhibited by all quantum particles under 
specific circumstances: bubble or spark chambers thus exhibits “trajectories” 
and “collisions” for electrons as well as for photons and stranger particles yet. 
In contradistinction, approximate classical wave behaviour is shown but by 
boson assemblies, the one important example here being that of the 
electromagnetic field. It becomes clear then that the classical wave limit requires 
considering an indefinitely increasing number of particles while Planck constant 
vanishes. This point has being given too little attention [37]. 

Finally, it is to be emphasized that the existence of such formal limits is by no 
means a guarantee of the applicability of the approximate theory, or theories, thus 
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obtained. Much more detailed assumptions have to be made if one is to understand 
and control at the theoretical level the approximate validity of a given limiting 
theory, even though it may be tested empirically. Concerning the case of quantum 
mechanics for instance, we know today that macroscopicity is not a sufficient 
condition for classicality, as is demonstrated by the existence of macroscopic 
quantum effects (in superfluids, for instance). It is not a surprise then that the very 
existence of ordinary, hard and stable matter, as approximately described by the 
classical mechanics of solid bodies, requires a very deep analysis at the quantum 
level in order to be understood from first principles [38]. It may serve as a useful 
conclusion then by reminding us that understanding the role of the physical 
constants is but the  beginning of a concrete physical analysis, and only helps in 
asking the right questions — which are now left to be answered. 
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