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”Definition” of Theoretical Terms:
Conceptual Issues

 A significant part of any scientific account of the world is the development 
of an appropriate terminology and definitions.

 The question of what constitutes a “correct” definition becomes even more 
acute when the theoretical vocabulary in one system is being “reduced to” 
or “defined in terms of” some other system.

 The concept of “entropy” was originally introduced in classical 
thermodynamics, in a setting which was agnostic about the atomic theory 
of matter and the kinetic theory of heat.

 Acceptance of the atomic theory and kinetic theory invited the “reduction” 
of classical thermodynamical concepts to statistical mechanical ones. But 
what is the criterion of success?



Crude Functionalism

 One thought—loosely associated with functionalism and particularly David 
Lewis—is that one identifies the “role” that the concept plays in the original 
theory and then seeks to define something that “plays the same role” or at 
least nearly the same role in the underlying theory.

 In the case of entropy, there are fundamental reasons why nothing 
definable in statistical mechanical terms can exactly “play the role” of 
entropy in classical thermodynamics. So that presents one problem.

 But there is another problem: what if many things definable in the 
underlying theory can equally well “play the same role”?



A Simple Example

 What is the “correct” definition of a circle in Euclidean geometry?

 In one sense of “play a role” any two definitions that are materially 
equivalent—that pick out all and and only the circles—are functionally 
equivalent to each other and “play the same role”: neither could be more 
correctly called the “right” or “true” or “real” or “correct” definition if they are 
necessarily coextensive.

 But this seems like the wrong result: some definitions “capture the essence” 
of a circle better than other, materially equivalent ones.

 Definition 1: A circle is the locus of all points equidistant from a given point 
(the ‘center’).

 Definition 2: A circle is a closed curve with the largest area for a given 
perimeter.



A Relevant Comment by Aristotle

 “It seems not only useful for the discovery of the causes of the derived properties 
of substances to be acquainted with the essential nature of those substances (as 
in mathematics it is useful for the understanding of the property of the equality of 
the interior angles of a triangle to two right angles to know the essential nature of 
the straight and the curved or of the line and the plane) but also conversely, for 
the knowledge of the essential nature of a substance is largely promoted by an 
acquaintance with its properties: for, when we are able to give an account 
conformable to experience of all or most of the properties of a substance, we 
shall be in the most favorable position to say something worth saying about the 
essential nature of that subject; in all demonstration a definition of the essence is 
required as a starting-point, so that definitions which do not enable us to 
discover the derived properties, or which fail to facilitate even a conjecture about 
them, must obviously, one and all, be dialectical and futile.” de Anima 402b 15



A Simple Example

 Here is a fact about circles: the angle subtended by an arc at the center is 
twice the angle subtended by the arc at any other point on the circle, e.g.:
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Which of These is Not Like the Other?:
Entropy Edition

 A) S = -H =                      Boltzmann 

 B) S = k ln(W)                                                     Planck

 C) S =                                                Gibbs

 D) S =                                                von Neumann

 F) S =                                                 Shannon



The Reversibility Objection

 1) Reversibility of the Microdynamics, i.e.

 There is an operator * such that if Si  S⇢ f then Sf*  S⇢ i*.

 2) The entropy of S = the entropy of S*

 3) Entropy can increase but cannot decrease.

 1), 2) and 3) are jointly incompatible: they cannot all be true.

 The solution is to abandon 3): it must be physically possible for entropy to 
decrease.



An Observation 

 From a logical point of view, admitting merely the physical possibility 
entropy decrease solves the problem.

 Surprisingly, that retreat from the absolute exceptionlessness of the 
Second Law can be as tiny, as mild, as you like.

 In particular, 1) and 2) can be made compatible with the claim that entropy 
decrease is as unlikely, as improbable, as you like (short of being 
absolutely impossible).

 Furthermore, there is no other reversibility problem that needs to be 
solved, and in particular none that requires the Past Hypothesis as a 
fundamental postulate.



A Parable

 What Zeus wants:

 1) There should be 100,000,000,000 rooms, each at a different level of 
unpleasantness, starting at neutral (O).

 2) Zeus should be able to place a soul initially at any level of 
unpleasantness up to 99,999,000,000.

 3) Each midnight, the soul will be required to exit the room it is in through a 
door.

 4) For 1,000,000 days in succession, the soul will visit the next worse 
room.



The First Design

 

Where the arrows represent subway turnstiles.



Zeus’s New Demand

 Zeus has already purchased a large supply of swinging doors. By their 
design, they allow motion in both directions.

 Furthermore, Zeus demands that the choice of which door to go through 
must be completely free and unconstrained. The soul can choose the door 
on any basis and by by whatever method it likes.



The Reversibility Objection

 You now complain that Zeus has set you a logically impossible task.

 If a soul on one night goes through a swinging door from room N to room 
N +1, then it must be possible on the next night for it to go back from room 
N + 1 to room N.

 Zeus concedes that given the swinging doors the demands are logically 
impossible to satisfy.



The Offer

 However, you ask Zeus to allow you a little bit of wiggle room, indeed as 
little as Zeus likes.

 You cannot absolutely guarantee that each soul will always move to the 
next worse room, but you can make it overwhelmingly likely that that will 
happen. Zeus can be morally certain that every soul will do exactly what 
he wants it to do.

 Zeus agrees that, given the logical impossibility of absolute certainty, this 
is good enough.



The Second Design

 



In Detail

 Room 0 has 1 door, that goes into Room 1.

 Room 1 has 1,000,001 doors, 1 to Room 0 and 1,000,000 to Room 2.

 Room 2 has 1,000,001,000,000 doors, 1,000,000 to Room 1 and 
1,000,000,000,000 to Room 3….

 Etc., Etc.

 The ordering of the “badness of the rooms” can be read off the number of 
doors in the room. For convenience, instead of recording the number, 
record the log of the number in base 1,000,001.



One More Detail

 The choice that the soul makes must be free. But of course, if a soul 
remembers which door it came in, then it can just hang around and go 
back out that door. So you ask Zeus to require that every day the soul 
drink a draught from the river Lethe, which causes it to forget how it came 
into the room. But the choice of door (by color, location, shape, size, etc.) 
is made completely free.

 In the design, the locations, shapes, sizes, etc. are randomized, so there is 
no correlation between these features and whether the door leads to 
Room N + 1 or Room N – 1.



A Typicality Argument

 In every room, overwhelmingly most of the doors lead to the next higher 
room. So no matter what the soul’s method of choice is, we can be morally 
certain that a door to the next higher room will be chosen. If we want to be 
even more certain, just increase the number of doors. Or Zeus can relax 
the criterion of success from always going to the next worst room to almost 
always going to the next worse room.

 Zeus is satisfied. You get paid.



Prediction

 You are a soul in the afterlife. You have been provided with a complete 
blueprint of hell. You have drunk from Lethe, and don’t recall which door 
you came in through or indeed how long you have been in hell. Looking 
around, you see that you are in Room 100. Midnight is about to arrive, and 
you must choose a door to go through. Knowing your situation, you 
anticipate that you will go through a door into Room 101. And always (or 
almost always) you are right that you go through a door into the next 
worse room.

 Badness monotonically (or almost monotonically) increases.



Retrodiction

 You are a soul in the afterlife. You have been provided with a complete 
blueprint of hell. You have drunk from Lethe, and don’t recall which door 
you came in through or indeed how long you have been in hell. . Looking 
around, you see that you are in Room 100. You ask yourself where you 
likely were yesterday.

 Looking at the blueprint, you determine that either you were in Room 99 or 
in Room 101. You have no other evidence of which it was.

 What is reasonable to conclude?



The Reasoning

 You must choose between the hypothesis H99 that yesterday you were in 
Room 99 and the hypothesis H101 that yesterday you were in Room 101.

 The conditional probability that you would today be in Room 100 
conditional on H99 is .999999.

 The conditional probability that you would today be in Room 100 
conditional on H101 is .000001.

 Your priors, whatever they are, are not wildly imbalanced in favor of H101.

 So as a good Bayesian, you conclude that most likely you were in Room 
99. And before that in 98. And before that in 97. And (at least almost 
always) you are right.



Note:

 So just by consideration of the relative numbers of doors in each room that 
lead up and lead down, you both predict that the “entropy” will continually 
monotonically increase and that in the past if has been continually and 
monotonically increasing, i.e. it was lower in the past.

 There is no disastrous retrodiction that has to be defeated or overridden 
by adding the Past Hypothesis.

 Indeed, the claim that the entropy was lower in the past should rightly be 
called the Past Conclusion.



Note:

 In the logic of the situation, it is immaterial whether there is a “top” room or 
not. The rooms could continue to grow ad infinitum, with no “largest” room 
or room with “the most doors”. That is neither here nor there.

 Of course if there is  a largest room most of whose doors lead back into 
the same room, then once you get there you will (probably) stay there (for 
a very, very, very long time).

 In other words, the existence of an “equilibrium room” is neither here nor 
there.



Note:

 Although the volume of the successive rooms gets larger and larger, the 
volume is playing no explanatory role in the behavior. What is important is 
not the structure of the volumes of the rooms, but the structure of their 
boundaries. What is playing the explanatory role is the fact that 
overwhelmingly most of the boundary of every room leads to a room with a 
larger boundary. Because what we want to explain is the nature of the 
transitions from one room to another, and that is determined by which part 
of the boundary the soul exits through, and which other room that 
boundary is shared with.



Note:

 If the rooms are more-or-less the same shape, and more-or-less convex, 
and if we choose a characteristic sort of average dimension D, and if the 
rooms are in an N-dimensional space, then the measure of the volumes of 
the rooms will be proportional to DN and the measures of the boundaries of 
the rooms will be proportional to DN-1. So the log of the volume will go as N 
ln(D) and the log of the boundary as (N-1) ln(D). So the ratios of these logs 
will be the same whether one measures the volume or the boundary.

 In particular, if the quantity k ln(volume) behaves the way we want the 
entropy to, then the quantity k’ ln(boundary) will do just as well.



Note:

Neither the measure of the volume nor the measure of the boundary by itself 
is doing the explanatory work we need. If we take a space and randomly 
partition it into regions such that one region is overwhelmingly most of the 
volume, then typically the boundary of every other element of the partition will 
lead directly into that largest region. Interpreting the log of the volume (or 
boundary) as the “entropy”, any system out of equilibrium will instantly 
“thermalize” to equilibrium.

So it isn’t merely the relative sizes of the volumes or of the boundaries that is 
doing the explanatory work: it is also their precise geometrical arrangement.



A Typical Diagram



Definition, Explanation, and Reduction 
(or Emergence)

 Entropy, along with Volume, Pressure, Temperature, Moles of gas, is a 
concept in classical Thermodynamics.

 In order to “reduce” Thermodynamics to an underlying microphysical 
theory, these same terms must be somehow “defined” in the proprietary 
language of the microtheory.

 What are the criteria of adequacy or success of a proposal for such a 
definition?



Criteria of Success

 Insofar as the reduced theory has empirically adequate laws, we want the 
definition to provide a conceptual connection that accounts for that 
success.

 In the first place, we want the definiens to behave—at least to very good 
approximation—like the definienda in terms of the laws or generalizations 
they obey.

 But more than that, the definitions should reveal the features of the 
microtheory that explains or accounts for the behavior of the reduced 
theory.

 If k ln (V)  k’ ln(B(V)), then if one behaves the right way, so does the other. 
But still, it is the structure of the B(V)s, not of the Vs, that accounts for the 
behavior.



Example

 In Classical Thermodynamics, we have

 PV = nRT  (Ideal gas Law)

 V is defined in the microtheory as V.

 P is defined in the microtheory as the average momentum flux per unit 
area. At equilibrium, that is the same everywhere and for all orientations of 
the unit area.

 T is defined as the average Kinetic Energy per particle or per degree of 
freedom.

 n is defined as the numbers of moles of the gas.

 kB is defined as conversion constant.



Classical Thermodynamics

 In classical thermodynamics, P and T are only defined at equilibrium.

 The microphysical definitions allow for a more extensive definition, relative 
to a coarse-graining.

 Similarly, the quantity S in classical thermodynamics is only defined for a 
system at equilibrium.

 For them, differences in S are well-defined.

 We want the microphysical definition of S to recover the classical values 
for equilibrium, but also to be more broadly defined to cover non-
equilibrium as well.



The Second Law

 Similarly, we want the microphysical definition to recover (at least to good 
approximation) the classical values for entropy of a system at equilibrium, 
but also to extend in a way that extends the Second Law.

 The classical Second Law (stated in terms of entropy) only pertains to 
comparison between equilibrium states, but once we fill in a definition for 
non-equilibrium we want to demand not merely that the entropy never go 
down in a closed system, but that if it rises it rises continuously, not by 
sudden jumps.

 The classical definition also pertains objectively to single systems, not only 
to large ensembles of systems. That is, we want an individualist definition 
of the entropy

 Either S = k ln(V) or S = k’ LN(B(V)) will work under some more conditions.



The Extra Conditions

 In order for the entropy to rise (or indeed fall) continuously, we require that the 
partitioning of the phase space into cells be correctly structured in term of which 
elements of the partition are adjacent to which.

 Adjacency is, by definition, sharing a boundary.

 So it is the boundary structure that accounts for the tendency of the so-defined entropy 
to behave as we want it to.

 So it is S = k ln (B(V)) rather than S = k ln(V) that provides the correct microscopic 
definition of the entropy of a system relative to a partition of the phase space.

 And as a bonus, the explanation of the Second Law is basically independent of the 
dynamics, unconcerned whether the dynamics is time-reversible, and never generates 
bad retrodictions that need to be  mended by appeal to the Past Hypothesis.
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