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In his cosmology paper of 1917, Einstein argued in favour of the
finitude of space, presented the first relativistic cosmological model
(his eternal and time-independent universe), and concluded that
the equations of general relativity had to be altered.

The Argument for Spatial Finitude

1) “we must supplement the differential equations by limiting
conditions at spatial infinity, if we really have to regard the
universe as being of infinite spatial extent.”

2) The most obvious supplement—imposition of asymptotic
flatness at spatial infinity—has undesirable consequences:

a) violation of general covariance;
b) violation of Mach’s Principle;
c) no equilibrium for island universes.

3) It appears that there are no other acceptable boundary
conditions.

——————————————————————————–
So we should abandon spatial infinitude.



Two Views of General Relativity

∗ Misner, Thorne, and Wheeler:
“Space tells matter how to move
Matter tells space how to curve”†

∗ Einstein:
“It seems to me absurd to ascribe physical properties to
‘space.’ The totality of masses produces the gµν-field
(gravitational field), which in turn governs the course of all
processes, including the propagation of light rays and the
behavior of measuring rods and clocks.”‡

† Gravitation, 5.
‡ Letter to Mach of late December 1913 (5.495). Paraphrase: Matter tells matter how to move.

The Mach–Einstein Principle

“The G -field is completely [restlos] determined [bestimmt] by the
masses of the bodies. Since mass and energy are—according to the
special theory of relativity—the same, and since energy is formally
described by the symmetric energy tensor (Tµν), it follows that the
G -field is conditioned and determined [bedingt und bestimmt] by
the energy tensor of matter.”

From the reply to Kretschmann of March 1918—On the Foundations of the General Theory of Relativity (7.4).
Translation of CPAE emended.

See also: the letter to Besso of sometime after 9 March 1917 (8.308); the letter to de Sitter of 24 March 1917
(8.317); the letters to Mie of 22 December 1917 (8.416), 8 February 1918 (8.460), and 22 February 1918 (8.470);
and the letter to Sommerfeld of 1 February 1918 (8.453).

∗ Not much like anything Mach ever said.

∗ There were other Einstein’s Mach’s Principles before 1916 and
after 1918.

∗ Nothing to do with rotation.

- If (M, g) is a homogenous solution of the Einstein-dust
equations with vanishing shear and expansion, then (M, g) is
either the Einstein static universe (if Λ > 0) or Gödel
spacetime (if Λ < 0).†

- So, plausibly, one can characterize the Gödel geometry in terms
of material degrees of freedom, so it is not a counter-example
to the present form of Einstein’s Mach’s Principle.

† Ozsváth, New Homogeneous Solutions of Einstein’s Field Equations with Incoherent Matter Obtained by a
Spinor Technique, §9.
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Weakness

Einstein is clearly committed to at least the following:

The Weak Mach–Einstein Principle: spacetime geometry
supervenes on the disposition of matter (over time).

In other dialects:

∗ fixing the history of the distribution of matter fixes the spacetime
geometry;

∗ there is only one spacetime geometry consistent with any given
history of matter;

∗ the degrees of freedom of the matter-geometry system are
exhausted by the material degrees of freedom.
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Einstein Against Weakness (I)

∗ One way to specify the disposition of matter is to say: there is
none, ever.

∗ It is consistent with the weak Principle that there be a
groundstate of the gravitational field that obtains in this case.

∗ Einstein intends something stronger: in his reply to
Kretschmann (7.4) of 1918 he asserts that his original field
equations violate Mach’s Principle because they countenance
Minkowski spacetime as a vacuum solution.

– Note that in this era Hilbert, too, thought that Minkowski spacetime was the only non-singular vacuum
solution—see his 1916/17 lecture notes, §50 and Foundations of Physics (Second Communication).

– As late as 1932 the existence of further nonsingular vacuum solutions was considered an open
question—see Lanczos, On the Problem of Regular Solutions of Einstein’s Gravitational Equations.

– Choquet-Bruhat reports that in the early 1950s Einstein still maintained that Minkowski spacetime was the
only non-singular vacuum solution asymptotically flat at spatial infinity—A Lady Mathematician in this
Strange Universe, 118.

And in a paper submitted one day later:

“If the De Sitter solution were valid everywhere, it would show
that the introduction of the “λ-term” did not fulfill the
purpose that I intended. Because, in my opinion, the general
theory of relativity is a satisfying theory only if it shows that
the physical qualities of space are completely determined
[vollständig bestimmt] by matter alone. Therefore, no
gµν-field must exist (that is, no space-time continuum is
possible) without the matter that generates it [welche es
erzeugt].”

Critical Comment on a Solution of the Gravitational Field Equations Given by Mr. De Sitter (7.5) (1918). See also
the letter to de Sitter of 24 March 1917 (8.317).



“It can be put jokingly this way.
If I allow all things to vanish
from the world, then, following
Newton, the Galilean inertial
space remains; following my
interpretation, nothing remains.”

Letter to Schwarzschild of 9 January 1916 (8.181). See
also the letters to de Sitter of 24 March 1917 (8.317) and
to Mie of 8 February 1918 (8.460).

Published: April 4, 1921
Copyright © The New York Times

Failing New York Times, 4 April 1921.
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Suggestion: Einstein’s Mach’s Principle was something like the
following:

Facts about spacetime geometry (including, e.g.,
facts about the trajectories of freely falling
bodies) supervene on facts about the distribution
and motions of material bodies because the
former sort of facts are wholly explanatorily
dependent on the latter sort of facts.

Claim: For Einstein, the relevant sense of explanatory
dependence was not causal.†

On this sort of view, geometric facts are genuine facts, but are
ontologically derivative upon more fundamental facts about matter.

† So he is a relationalist in the sense of Dagupta, North, and Schaffer. And Belot (?).

In Support of this Suggestion

The 1913 letter to Mach quoted above. Plus a couple of texts of 1920:

∗ “according to the gen. theo of r., physical space has reality, but not
an independent one, in that its properties are fully determined
[vollständig bestimmt] by matter.”†

∗ In relativity, space/ether “is by no means homogeneous, and its
state has no independent existence, but rather depends [hängt ab]
upon the field-generating [feld-erzeugenden] matter. Since the
metric facts can no longer be separated in the new theory from the
physical facts “proper,” the concepts of “space” and “ether” flow
into each other. Since the properties of space appear to be
conditioned [bedingt] by matter, space is no longer a precondition
[Vorbedingung] for matter in the new theory. The theory of space
(geometry) can no longer be treated before or developed
independently of mechanics and gravitation.”‡

† Letter to Schlick of 30 June 1920 (10.67.)
‡ Fundamental Ideas and Methods of the Theory of Relativity, Presented in Their Development (7.31), §22.
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Does the (weak) Mach–Einstein Principle hold in general relativity?

Methodological stance: Interesting universal generalizations about
general relativity are typically false; but it is often profitable to ask
just what sort of counter-examples there are.
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The Electromagnetic
Mach–Einstein Principle

E-M M-E Principle: The disposition (over time) of (discrete)
charged matter determines the electromagnetic field.

Warning: Einstein was no fan of the E-M M-E .†

† Einstein entertained/favoured an approach on which charged particles are stable structures in a non-linear
electromagnetic field. See his letter to Lorentz of 23 May 1909 (5.163); On the General Theory of Relativity
(Addendum) of November 1915 (6.22); The Foundations of the General Theory of Relativity of 1916 (6.30, 188);
the letter to Kaluza of 29 May 1919 (9.48); his tribute to Lorentz of 1920 (Ether and Relativity, 7.38, 23).



An Approach with Honest Interactions

∗ We can get a well-behaved theory that includes self-interaction by
following Abraham: work with extended particles that are rigid
spheres in a preferred frame.

∗ Supervenience fails radically in the vacuum case: an
infinite-dimensional family of solutions consistent with saying there
is no charged matter anywhere, ever.

∗ But (plausibly): the only field consistent with a single charge
permanently at rest is the charge’s Coulomb field FC .

(i) If the exterior field isn’t spherically symmetric, then
presumably the charge will accelerate at some point.

(ii) If the exterior field is spherically symmetric, if must be FC

(electromagnetic Birkhoff’s theorem).

∗ If this works, then we have managed to prove that the EM-ME
Principle holds in one simple case. If it doesn’t work, it will be
because there is some surprising way of evading (i)—and we can
handle that by resorting to a little theft by adding a postulate that
fields must share the symmetries of their sources.

Background

Weakness & Strength

The Mach–Einstein Principle in General Relativity
Warmup: Maxwell’s Theory
The Vacuum Case
Some Positive Results
Einstein vs. Einstein
Counter-Examples

In Conclusion

One way to specify the history of massive matter is to say that
there is none anywhere, ever. This is consistent with many
different spacetime geometries.

So the Mach–Einstein Principle fails, unless we are willing to say
that all of these geometries are unphysical (or that all but one
are).†

† Doing so would not be especially costly: since there is massive matter in our world, whenever some process can
be modelled using a vacuum solution, it had better be the case that it can also be modelled using a solution with
matter.
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The first substantive test of the Mach–Einstein Principle comes in
the one-body case. The natural place to start is with a static
isolated Λ = 0 body.

Fluid Stars

∗ Consider a static isolated blob of perfect fluid with constant
mass density ρ and total mass M.

∗ If the exterior metric is static and asymptotically flat at
spatial infinity, then:

– the blob is a sphere (Lindblom, Masood-ul-Alam);
– so the exterior metric is Schwarzschild (Birkhoff).

Elastic Bodies

∗ Set G = 0. Specify a compact elastic body B0 in equilibrium
in Euclidean space.

∗ Then for each sufficiently small ε, there is a unique static
spacetime that is asymptotically flat at spatial infinity and
vacuum exterior to an elastic body Bε that represents the
deformation of B0 when G = ε.

Andersson et al., Static Self-Gravitating Elastic Bodies in Einstein Gravity.

Their basic strategy: working in material variables, formulate the Einstein-elastic equations as a non-linear map
between Sobolev spaces; take the derivative of this map at the relaxed configuration; project out symmetries and
use the implicit function theorem to define Bε.

Moral

∗ So if we are able to prove (or willing to stipulate) that the
geometry exterior to an isolated body must be asymptotically
flat and have the same symmetries as the body, then the
Mach–Einstein Principle holds for certain sorts of isolated
bodies.

∗ Let us set aside for today the question whether the field
equations imply that the geometry exterior to a static isolated
body must be asymptotically flat (they don’t).

∗ Plausibly, the geometry exterior to a spherically symmetric
body should be spherically symmetric—otherwise, won’t the
symmetry of the body fail when it eventually feels the exterior
asymmetry?

∗ Plausibly, for the same reason, the geometry exterior to a
static body should be static.
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Sciama

“I had the privilege of discussing this question with Einstein only a
week before he died, in April 1955. It was at the end of my year’s
visit to the Institute for Advanced Study. To help ease my tension I
started the discussion with a prepared sentence, ‘Professor
Einstein, I would like to talk about Mach’s principle, and I have
come to defend your former self against your later self.’
Fortunately he laughed uproariously at this rather feeble beginning,
perhaps to put me at my ease, and said, “That is gut, ja.” Our
subsequent discussion was rather inconclusive and soon wandered
onto other topics. . . ”

Issues in Cosmology, p. 396

Einstein to Pirani

∗ Mach “sought to abolish space and replace it by the relative mutual
inertia of ponderable bodies. . . . This certainly did not work . . . .”

∗ When people “speak today about Mach’s Principle they do not
mean to abolish the continuum but to preserve the field. But they
think that the field ought to be completely determined [völlig
bestimmt] by matter. This however is a ticklish affair [eine heikle
Sache] for the Tik which are to represent ‘matter’ always presuppose
the gik .”

∗ “In my opinion we ought not to speak about the Machian Principle
any more. It proceeds from the time in which one thought that the
‘ponderable bodies’ were the only physical reality and that all
elements that could not be fully determined by them ought to be
avoided in the theory. I am well aware that for a long time I too was
influenced by this fixed idea.”

Letter to Pirani of 2 February 1954. Translation of Torretti, Relativity and Geometry, 202.

Ehlers’s Version of the Worry

∗ “If you have a [stress-energy] tensor Tµν and not a metric,
then this does not meaningfully describe matter. There is no
theory of physics so far, which can describe matter without
already the metric as an ingredient of the description of
matter. Therefore within existing theories the statement that
the matter by itself determines the metric is neither wrong nor
false, but it is meaningless.”

From a transcript of a conference—p. 93 in Mach’s Principle: From Newton’s Bucket to Quantum Gravity.
Mistakenly attributed to Einstein in Schmid, Cosmological Gravitomagnetism.



How Does it Work?

i) Matter enters the field equations only through the
stress-energy tensor.

ii) So to say that matter determines the spacetime geometry is
to say that there is only one metric consistent with a given
stress-energy tensor.

iii) But the stress-energy tensor depends on the spacetime metric
as well as the variables describing the matter content of
spacetime.

iv) So in general relativity it makes no sense to speak of some
way that matter might be distributed as determining (or
failing to determine) the geometry of spacetime.

Rejoinders:

∗ The argument is not sound—it makes sense (because it is
false) to say that the null distribution of matter determines
the spacetime metric.

∗ More generally, we have just seen some tricks for specifying
the matter distribution that do not involve specifying the
stress-energy tensor and which do not seem to require that a
spacetime metric have been specified in advance.

∗ Indeed, I can say: there is a blob of incompressible fluid of
total mass M and that density ρ without having first specified
a spacetime metric—since this claim makes sense in either
Newtonian physics or general relativity.

∗ (But wait! Do we really have the same properties in both
theories? I don’t know. But we certainly have properties
playing similar functional/operational roles—and that suffices
here.)

A Fall-Back

The worst case would be: we cannot specify the state of matter
without also specifying the geometry of the part of spacetime
occupied by matter. Even in this case, all is not lost for the
Mach–Einstein Principle: it is a substantive question whether there
is ever more than one (inextendible) vacuum exterior solution
consistent with a given way of specifying the material and
geometric degrees of freedom in an occupied region.
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That Pesky Constant
In order to construct his eternal, time-independent, spatially-finite
cosmology, Einstein added a term to his equations that gives
spacetime a repulsive tendency. Unchecked, it leads to an
exponential spatial expansion.

de Sitter Spacetime

Contrary to Einstein’s intentions, that makes it much easier to find
counter-examples to the Mach–Einstein Principle: in the Λ > 0
regime, an isolated, static, spherically symmetric perfect fluid star
admits more than one inextendible exterior geometry.

A Λ > 0 Universe Containing Two Stars
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6. Solutions on R × S3 and R × S2 × R. In sections 3.4 and 5.1 we con-
structed spherically symmetric static solutions of the Einstein–Vlasov system with
small positive cosmological constant Λ. For small radii the Λ-term plays only a minor
role. This was crucial for the method of the proof. However, the global structure of
the constructed spacetime is substantially different when Λ > 0 and shows interesting
properties. In particular, it allows for solutions with different global topologies.

The following theorem gives a class of new solutions to the nonvacuum field
equations with nontrivial global topology. These solutions are constructed from pieces
consisting of the solutions constructed in Theorems 3.8 and 5.5.

Theorem 6.1. Let Λ > 0 be sufficiently small and let M1 = R × S3 and M2 =
R × S2 × R. The following types of static metrics solving the Einstein–Vlasov system
exist on these topologies.

(i) There is a class of static metrics on M1, which is characterized in Figure 2.
In regions I and IV a metric in this class coincides with two a priori different
solutions of the type constructed in Theorem 3.8 with identical total mass,
but with possibly different matter distributions and radii of the support of the
matter quantities R1 and R2 and regular centers. The metric in regions II
and III is vacuum.

(ii) There is a class of static metrics on M1, which is characterized in Figure
3. A metric in this class consists of two regular centers with finitely extended
matter distribution around each of the centers of equal mass, but with possibly
different matter distributions and radii R1, R2 of the type constructed in
Theorem 3.8. These two regions are connected by a chain of black holes of
identical masses (the diagram shows the minimal configuration with one black
hole).

(iii) There is a class of metrics on M2, which is characterized in Figure 4. The
spacetime consists of an infinite sequence of black holes, each surrounded by
matter shells of possibly different radii and positions. In regions IV, VII,
X, and XIII these solutions coincide with those constructed in Theorem 5.5.
The necessary conditions on the masses are MA1

ϱ = MA2
ϱ , MB1

ϱ = MB2
ϱ and

MA
0 + MA2

ϱ = MB1
ϱ + MB

0 , where M i
0, i = A, B, denote the mass parameter

of the black holes and M
ij
ϱ , i = A, B, j = 1, 2 denote the quasilocal mass of

the matter shells defined in (6.11).

Fig. 2. Penrose diagram of the maximal C2-extension of a metric constructed as a spherically
symmetric solution of the Einstein–Vlasov system. Region I corresponds to the region 0 < r < rC .
The metric is extended in an analogous way to the standard extension of the deSitter metric. The
gray lines are surfaces of constant r.
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∗ Cauchy surfaces have topology S3.

∗ The exterior spacetime is
Schwarzschild–de Sitter.

∗ Regions I and IV are static.

∗ Regions II and III undergo
exponential
expansion/contraction.†

∗ We could quotient by a reflection
symmetry to get a solution with a
single star (with elliptic spatial
topology).

Figure 2 of Andréasson et al,
Static Solutions of the Einstein–Vlasov System with a Nonvanishing Cosmological Constant.

† So the Λ > 0 field equations do not imply that the geometry exterior to a static body must be static (even in
the spherically-symmetric case).

Another solution with the same topology and matter
configuration—but now with a black hole and a white hole.
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Fig. 3. Penrose diagram of the maximal C2-extension of a metric constructed as a spherically
symmetric solution of the Einstein–Vlasov system. Region I corresponds to the region 0 < r < rC .
In this region matter (represented by the shaded area) is present and the metric is regular. This
metric is extended with the Schwarzschild–deSitter metric that leads to a periodic solution. The
periodic course stops when a matter region appears again preventing the metric from being singular
at r = 0. The gray lines are surfaces of constant r.

Fig. 4. Penrose diagram of the maximal C2-extension of a metric constructed as a spherically
symmetric solution of the Einstein–Vlasov system. The solution coincides with the Schwarzschild–
deSitter spacetime in the vacuum regions and the black holes are surrounded by shells of Vlasov
matter (gray shaded domains). Notably, the black holes do not necessarily have the same mass. The
gray lines are surfaces of constant r.

Remark 6.2.
(a) The black hole masses in the third class of solutions in the previous theorem

can be pairwise different. Only the total mass of the black hole and matter
shell have to agree pairwise; see the condition in (iii) above.

(b) Combinations of the classes (ii) and (iii) yield similar metrics on M3 = R×R3

with a regular center followed by an infinite sequence of black holes.
(c) The second class of solutions could also be generalized by adding matter shells

around the black holes. The mass parameters then have to be adjusted.
(d) When crossing the cosmological horizon or the event horizon of a black or

white hole the Killing vector ∂t changes from being timelike to spacelike.
This means that the maximally extended spacetime contains both static and
dynamic regions that are alternating. This holds for all constructed classes.

Proof. We outline now the construction of the spacetimes given in the previous
theorem. For the first two classes of spacetimes we consider solutions of the Einstein–
Vlasov system with a regular center. Let (µΛ, λΛ, fΛ) be a static solution of the
spherically symmetric Einstein–Vlasov system with positive cosmological constant Λ
defined for r ∈ [0, rC) such that the support of the matter quantities is bounded by a
radius 0 < R0Λ < rC . The radius rC denotes the cosmological horizon. On [R0Λ, rC)
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∗ For each N = 1, 2, 3 . . . there is an exterior of this kind with N
back holes and N white holes interpolating between the two
stars.

∗ We can again quotient to construct single-star versions.

Figure 3 of Andréasson et al..
For more on quotients of such spacetimes, see Schleich & Witt, What Does Birkhoff’s Theorem Really Tell Us?



Collapse

We can also construct counter-examples involving a single
non-static but spherically symmetric Λ = 0 body.

The simplest collapsing system:

∗ A collapsing ball of fluid surrounded by vacuum.

∗ We pose time-reversal-symmetric initial data at t = 0:

– in the central region, a homogeneous sphere of fluid;
– in the exterior region, Schwarzschild geometry.

∗ For positive t, the ball collapses under its own gravity,
disappears behind a horizon, and a black hole forms leaving a
future-eternal vacuum exterior.

∗ So for negative t, a past-eternal vacuum with a white
hole—which is destroyed when an expanding ball of fluid
emerges.

We are going to cook up another solution with different vacuum
geometry near spatial infinity but with the same matter and
geometry in the central region.

Σ0

Our solution. The inner region of Σ0 (t = 0) where the body is
located is red. The outer region vacuum region of Σ0 black.

Σ0

Some points in the exterior region of Σ0 can send signals that will
be received by the fluid body before it is destroyed.



Σ0

Signals sent inwards from points far enough out along Σ0 will
instead be snuffed out by the singularity left behind by the body.

Σ0

Divide the exterior region Σ0 into green (points that can signal the
body) and blue (points that cannot).

Σ0

Goal: Create a new initial data set on Σ0 that matches the given
one in the red and green regions but differs the blue region.

Σ0

This will determine a spacetime with the same matter configuration
as before—but with different geom near spatial/null infinity.



It is not obvious that we can do this:

∗ We cannot, for instance, just say that outside a transition
zone, the blue region looks like a slice of Minkowski spacetime
(because of the positive energy theorem).

But we can do it:

∗ A gluing technique of Chruściel and Delay allows us to pose
asymptotically flat initial data on the blue region whose
development is non-static.†

∗ Since the new solution is not static it cannot be spherically
symmetric (Birkhoff).

∗ So here we have a vacuum exterior for a Λ = 0 spherically
symmetric isolated body this is not spherically
symmetric—and hence certainly differs from the spherically
symmetric solution we started with.

† On Mapping Properties of the General Relativistic Constraints Operator in Weighted Function Spaces, with
Applications.
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Questions

∗ What does Einstein’s Mach’s Principle require beyond mere
supervenience?

∗ Is the Electromagnetic version of Einstein’s Mach’s Principle a
consequence of the Maxwell–Abraham theory?

∗ In general relativity: what are the acceptable ways of
specifying the material degrees of freedom upon which
geometric degrees of freedom are supposed to supervene?

∗ How fares the Mach–Einstein Principle beyond the regime of
static isolated bodies? What global structures are
(in)consistent with the Principle?

∗ Can a static body admit exteriors with distinct asymptotic
behaviours at spatial infinity?

Thank You!

Mach Einstein



Σ0

A spherically-symmetric collapsing body that exists eternally
towards the past.

Σ0

In this setting, even points on Σ0 that cannot signal the body can
be signalled by it.

Σ0

So changing initial data in a region on Σ0, no matter how far out,
can be expected to require changes to the history of the body.

Σ0

Possible way out: secure a notion of inward moving disturbance for
initial data on Σ0. (Far from obvious how to do this.)



I−
Σ0

Possible way out: Pose initial data on I− instead of on Σ0.
Problem: extant results give existence only locally in time.

Einstein Against Weakness (II)

∗ Einstein found an approximate solution describing the exterior
field of an isolated spherical massive body, and Schwarzschild
the corresponding exact solution

∗ So far so good—one might think that they had started down
the road to showing that an isolated spherical body
determines a certain spatiotemporal geometry

∗ But that is not Einstein’s view. In his treatment and in
Schwarzschild’s, the spacetime geometry is asymptotically flat
at spatial infinity—as you proceed outwards along a spatial
geodesic from the central body, the geometry rapidly
approaches that of Minkowski spacetime. To Einstein’s mind,
this means that the Principle is violated because the central
mass is not responsible for the geometry

Let L be the path of followed by a free particle and L′ any curve
that initially coincides with L, then diverges from it. Then:

“the relativistic point of view requires that the actually
described path L be preferred over the, from the logical
point of view, equally possible path L′, on the basis of
a real cause [Realursache], which has the preference of L
over L′ as a consequence. . . . Mathematically, this means:
the gµν ’s must be determined [bestimmt] completely by
the Tµν ’s . . . .
“This requirement is not satisfied by Newton’s theory, but
also just as little by mine as long as the world is con-
ceived as quasi-Euclidean. For then the gµν ’s are predom-
inantly fixed by nonrelativistic boundary conditions at in-
finity. Then no real cause exists for the preference of path
L over certain other L′’s . . . ”

L
L′

Letter to Mie of of 22 February 1918 (8.470). For related
discussions, see Cosmological Considerations in the General Theory
of Relativity (6.43 §2), the letter to Besso of sometime after 9 March
1917 (8.308), and the letters to Mie of 8 February 1918 (8.460) and
22 December 1917 (8.416)

The reasoning appears to be:

∗ Suppose that all solutions of the field equations that represent
isolated systems are asymptotically flat at spatial infinity

∗ Then Minkowski spacetime is in some sense the default
spacetime geometry

– it represents how the world would be in the absence of matter;
– departures from flatness near gravitating bodies are due to

those bodies

∗ But in regions of spacetime distant from any gravitating
bodies, the spatiotemporal geometry will depart from that of
Minkowski spacetime only to a minuscule extent

∗ So we have to admit that in such regions, the geometry is
largely determined by the fact that Minkowski spacetime is
playing the role of a default in this theory



So:

Einstein has in mind something stronger than the Weak
Mach–Einstein Principle

The Causal Mach–Einstein Principle?

∗ In the letter to Mie quoted above, Einstein requires that there
be a real cause [Realursache] for motions and seems to say
that the Mach–Einstein Principle is the mathematical
implementation of this requirement

∗ This suggests that intends a causal reading of the principle:
Spacetime geometry depends causally on the distribution
of matter (and on nothing else)

Call this the Causal Mach–Einstein Principle

Against This Suggestion. I

∗ Einstein tends to say that matter is geometry is bestimmt
(determined) or bedingt (conditioned/constrained) by the
distribution of matter

∗ If this was intended in a causal sense, you might expect him
to say that geometry is kausal bestimmt or kausal bedingt by
the distribution of matter

∗ This happens once. In a paper of 1914, a character who has
“natural intelligence but has learned neither geometry nor
mechanics” suggests that the motions of bodies are at least
partially causally determined by the fixed stars†

∗ But he never returns to this phrasing, except in passages
deleted or revised in a manuscript draft of 1920‡

† The Relativity Problem (4.31), §II
‡ The manuscript draft of Ether and Relativity (7.38) features a use of kausal bestimmt in a paragraph later
deleted. It also features a kausal bedingt formulation of the Mach–Einstein Principle—but kausal bedingt is revised
to bestimmt. The phrase kausal bestimmt also occurs in the letter to Schottky of 10 October 1917 (8.388) and in
the irritated letter to Wulf of 25 February 1921—but those uses are unrelated to the Mach–Einstein Principle

Against this Suggestion. II

About Realursache

∗ Other than in the letter to Mie, not used formulations of the
Mach–Einstein Principle

∗ A peculiar term that Einstein uses only four times, each time
in implicit or explicit contrast with the merely factitious cause
available in Newtonian and special relativistic physics to
explain the asymmetry of Einstein’s globes. But he never says
that in general relativity matter is the Realursache of
geometry†

∗ We see a similar pattern—using more causal language to
complain about alternatives, less causal language to describe
the situation in his theories—in “On the Present State of the
Problem of Gravitation” of 1913 (4.17)

† The other three:
“Dialogue about Objections to the Theory of Relativity” of 1918 (7.13)
“Reply to Ernst Reichenbächer” of 1920 (7.49)
Nobel lecture of 1923 (14.75)



∗ A complaint about Nordström’s theory: “according to this theory it
appears that the inertia of bodies, though indeed influenced
[beeinflußt] by other bodies, is not caused [verursacht] by them”

∗ A criticism of “the theory familiar to us today”: “in the latter the
inertial system is introduced, whose state of motion is, on the one
hand, not conditioned [bedingt] by the states of observable objects,
and therefore is caused [verursacht] by nothing accessible to
perception, but on the other hand, should be determinative
[bestimmend sein soll] of the behaviour of material points”†

∗ Praise for the Einstein–Grossman theory: “if the inertia of a body
can increase due to cumulation of masses in its vicinity, then we
have no choice but to view the inertia of a point as being
conditioned [bedingt] by the existence of the other masses. Thus,
inertia appears to be conditioned [bedingt] by a sort of interaction
between the mass point to be accelerated and all of the other mass
points”‡

† Translation of Ryckman, Einstein, 229
† CPAE translation emended

The Maxwell–Lorentz Equations

∂tB +∇× E = 0

∂tE −∇× B = −J
∇ · E = 4πρ

∇ · B = 0

ṗ = q(E + v × B)

Here E and B are the electric and magnetic
fields;
ρ and J are the charge density and current;
v , p, and q are the velocity, momentum, and
charge of a charged particle

The Electromagnetic
Mach–Einstein Principle

E-M M-E Principle: The disposition (over time) of (discrete)
charged matter determines the electromagnetic field

Warning: Einstein was no fan of the E-M M-E†

† Einstein entertained/favoured an approach on which charged particles were stable structures in a non-linear
electromagnetic field. See his letter to Lorentz of 23 May 1909 (5.163); On the General Theory of Relativity
(Addendum) of November 1915 (6.22); The Foundations of the General Theory of Relativity of 1916 (6.30, 188);
the letter to Kaluza of 29 May 1919 (9.48); his tribute to Lorentz of 1920 (Ether and Relativity, 7.38, 23).

Does the EM-ME Principle Hold?

No. In the vacuum case the equations are:

∂tB +∇× E = 0

∂tE −∇× B = 0

∇ · E = 0

∇ · B = 0

These admit a vast a family of solutions. But note that we lose
nothing, in terms of applicability, if we declare all vacuum solutions
to be unphysical (or all but one)



What if we add matter?

Hard to say. We need to do something about the problem of
self-interaction of charged particles. And we need to decide what
the EM-ME says—and whether we are hoping to derive it from the
Maxwell–Lorentz equations alone (honest toil) or whether we are
allowed to supplement the equations by further postulates
(theft-ish)

Lorentz’s Approach

∗ Work with point particles, ignore self-interactions, and restrict
attention to solutions of Maxwell’s equations that arise via the
method of retarded potentials:

We need not . . . speak of other solutions, if we assume
that an electromagnetic field in the ether is never produced
by any other causes than the presence and motion of elec-
trons †

∗ The result is a theory in which a strong causal form of the
Electromagnetic Mach–Einstein Principle obtains: the
distribution of charged matter causally determines the
electromagnetic field—because we have added as a postulate
that fields are caused by charges

† The Theory of Electrons, §14

Retarded Potentials?

∗ First, select a fundamental solution for Maxwell’s
equations—a solution for a point charge that exists only at
one instant

∗ There are many such solutions.
∗ But if charge causally determines the field, then we want the

unique one that lives on the future lightcone and is invariant
under symmetries of the charge configuration

∗ Now we can find the field corresponding to the worldline of a
charged particle: treat the worldline as a superposition of
instantaneously existing point charges, and sum the
corresponding fundamental solutions

An Approach with Honest Interactions
∗ We can follow Abraham by working with extended particles

that are rigid spheres in a preferred frame

∗ Now we get a well-behaved theory that includes
self-interaction

∗ Supervenience still fails radically in the vacuum case

∗ But (pausibly): the only field consistent with a single charge
permanently at rest is the charge’s Coulomb field FC :

i) If the exterior field isn’t spherically symmetric, then
presumably the charge will accelerate at some point

ii) If the exterior field is spherically symmetric, if must be FC (by
the electromagnetic analog of Birkhoff’s theorem)

∗ If this works, then we have managed to prove that the
EM-ME Principle holds in one simple case. If it doesn’t work,
it will be because there is some surprising way of evading
(i)—and we can handle that by resorting to a little theft by
adding a postulate that fields must share the symmetries of
their sources
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