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0. Novel QG predictions are (very) hard to test

• As customary, I start by noting how hard it is to test predictions of quantum gravity (QG).


‣ Insofar as the predictions of GR or QM are recovered, that’s not true.


‣ It depends on what you mean by ‘QG’ [W21]. If you include QG-as-EFT, then:


- in the mean field, ‘semiclassical gravity’ sector, there are tested novel predictions. 


- the inflaton field account of CMB structure involves spacetime superposition.


• But can we experimentally observe the characteristically ‘quantum nature’ of gravity?


‣ For instance, a gravitational version of the photoelectric effect? But for the n=2 to n=1 
transition the EPE is ~10eV, but the GPE is ~10-38eV, so this is impractical.


‣ For instance, a more promising approach might be to see decoherence between a 
material system and gravitons.


‣ Or, in the study of ‘gravitational Schrödinger cats’ (‘gravcats’) – systems small enough to 
maintain quantum coherence, but heavy enough to gravitate.
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Part One: physics



• Suppose two gravcats (say, 10-14kg diamonds), separable but in superposition:








‣ Each term corresponds to a different gravitational potential, so phase shifts result: 


,


an observably entangled state.


• Claim: such gravitationally induced entanglement (GIE) would be a ‘witness’, or indirect 

observation, of the quantum nature of gravity [B&al17][M&V17][C&R19].


‣ But would it? After all, we simply appealed to a  potential, which (even 

with hats) doesn’t look very interestingly quantum. 
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1. Gravcats: the naive model



• Even at this level of analysis, entanglement is incompatible with semiclassical gravity, as 

given by the Einstein-Møller-Rosen equation: .


‣ In SCG (ignoring self-gravity) each gravcat thus sees a potential centered at the expected 

position of the other ( ): e.g., for the left packet of gravcat 1  .





 +  +  +  





‣ The wavefunction after the interaction factorizes, so SCG does not predict entanglement.


• But is that to witness the quantum nature of gravity? And is ruling out SCG important?
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2. Gravcats vs semiclassical gravity



3. Gravcats: the Newtonian model
• To understand better, let’s start with more fundamental physics: QFT and GR [A&H14].


‣ Start with GR with scalar matter, linearize in Minkowski spacetime, and gauge fix:





 is the matter density,  stress-energy, and  metric perturbations.


‣ However, in the GIE calculation,  and perturbations can be neglected, so the 

Hamiltonian reduces to  on quantization – as in the naive model.


• This Newtonian term (i) arises from the gauge constraint, and (ii) is fully determined by the 

instantaneous matter distribution: from a gauge theoretic POV the ‘true’ degrees of 

freedom all lie in the metric perturbations – gravitons, since quantized.


‣ But gravitons are not involved in the relative phases, so in that sense GIE does not 

‘truly’ witness the quantum nature of gravity at all! [ALS21]
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Ĥ =
Gm2

| ̂x1 − ̂x2 |



4. Gravcats: Tripartite models
• But what about the lesson of the past 200 years that gravity is dynamic and causal?


• Simplemindedly, the initial state is tri- not bi-partite, two gravcats plus gravity:


 


‣ E.g., each  could be a definite state of metric geometry associated to each gravcat 

pair: say,  (with  outside, ).


‣ Then [C&R19] different terms correspond to gravcat trajectories with different proper 

times, so relative phases due to time dilation – equal to those of the Newtonian model.


‣ GIE gives witness to a quantum superposition of gravity!


• We motivated this approach with causality, but that’s not essential: the same result holds 

in Newton-Cartan gravity. (Also with coherent states of the graviton field [B&al17].)


‣ What matters is that gravity be an interaction-mediating subsystem. Then theorems 

say it must be non-classical if the gravcats entangle [M&V17, 20; GGS22]: witnessing 

as dependence of some observation on non-classicality of gravity.
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Part Two: interpretation



5. Quantum gravity in a laboratory?
• According to the Newtonian model gravcats do not witness quantum gravity, since only 

the gauge fixed term plays a role …





• … while according to a Tripartite model they do, since only if gravity is a quantum 

intermediary can it produce GIE …





… so which is the correct way to model the experiment?


• To some degree a bad question, since it assumes that fundamental physics always yields 

a unique approximate model.


• Indeed, both models involve reasonable theoretical stances, so perhaps the issue is just 

theory-laden. Then the thing to do is clarify the competing theoretical perspectives.


- (a) reconstruct competing assumptions; (b) do they settle the debate? (No!)
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5. Quantum gravity in a laboratory?

• Newtonian model: applicability of standard gauge quantization and lore to GR –


- the so-called ‘true’ degrees of freedom do not play a role.


- the whole effect is due to a Newtonian potential.


‣ But what is it to be a ‘true’ degree of freedom? Do they constitute ‘gravity’?


- the gauged vs free split is partially dependent on the choice of gauge. 


- different potentials are physically different, even if fixed by matter. 


- which is why the Newtonian potential was ‘gravity’ until GR!


‣ So it’s ontologically tendencious to say that the interaction is not ‘truly’ part of the 

gravitational field.


‣ Nonetheless, the question of whether  alone is ‘quantum’ (or at least 

‘non-classical’) remains: especially as it is gauge, not dynamical.

̂V =
Gm2

| ̂x1 − ̂x2 |



5. Quantum gravity in a laboratory?
• Tripartite model: gravity is an intermediary subsystem (motivated by spacetime causality).


• Some might resist this assumption:


‣ by neutrality on whether the EFT approach to GR is valid,


‣ or by countenancing an alternative way to combine the quantum with gravity.


• However, amongst QG theorists the EFT approach to GR is widely accepted as valid:


‣ even the weaker assumptions of the no-go theorems then entail (given GIE) a quantum 

spacetime superposition (more carefully, a ‘non-classical’ state).


• Nevertheless, someone with such theoretical commitments might still hold that the 

Newtonian, not tripartite, model is appropriate to a gravcat experiment, so that in the 

most important sense, GIE does not witness the quantum nature of spacetime:


‣ maxim: in case of empirical equivalence, prefer models that idealize more,


‣ after all, gravity is only a gauge constraint in the experiment, not dynamical,


‣ a stronger witness would be entanglement with gravitons [B&al18].



6. Why perform the experiment?

• The experiment is partly motivated to rule out SCG (as a fundamental theory) – yet few 

involved take that as a serious contender. So why (else) go to the expense and effort?


‣ Perhaps because of the high epistemic standards of science, SCG must be refuted… 


‣ … but not to test predictions distinguishing different theories of QG… at least at first.


‣ Because one accepts the EFT approach to GR, or even the tripartite model as 

appropriate for gravcats, so entanglement witnesses the quantum nature of gravity.


‣ But experimental science is about more than just testing, it is about gaining control of 

new physical regimes – ‘know how’, as well as ‘knowing that’.


- Pushing beyond quantum neutron interferometry in the Earth’s gravity. [COW75]


‣ Of course in part for practical purposes and to develop the technology for future tests, 

but also to ‘make real’ in the laboratory the ‘merely’ theoretical.
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